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ABSTRACT

This report documents work sponsored by the U.S. Nuclear Regulatory Commission (NRC) at
the Oak Ridge National Laboratory (ORNL) as part of the RES project, “Application of Point
Precipitation Frequency Estimates to Watersheds.” This project was implemented as part of the
Probabilistic Flood Hazard Assessment (PFHA) Research Program. The objective of the PFHA
Research Program is to develop tools and guidance on the use of PFHA methods to risk-inform
NRC'’s licensing of new facilities as well as licensing and oversight of currently operating
facilities as they relate to flooding hazards.

Many nuclear power plants (NPPs) are located on or near rivers so riverine flooding hazards
need to be considered in their design and operation. Probabilistic riverine flood models are
important tools for realistic assessment of flooding risks. However, these models require areal
estimates of the depth, duration, and frequency of rainfall distributed over the watershed, which
are not often available. Point precipitation frequency estimates are more widely available. For
example, the National Oceanic and Atmospheric Administration (NOAA) has published NOAA
Atlas 14, which provides point precipitation frequency estimates for 5-minute through 60-day
durations at average recurrence intervals of 1-year through 1,000-year. The research
documented in this report addresses areal reduction factors (ARFs), which can be used to
convert the widely available point precipitation frequency estimates, to estimates of areal
precipitation frequency over a watershed.

The most widely used ARF source is Technical Paper 29 (TP-29) published by the then U.S.
Weather Bureau in 1958. However, both the methods and the underlying precipitation data used
to produce TP-29 are seriously out of date. For example, due to the small gauge network
available at the time of TP-29’s compilation, ARF estimates developed are only for watersheds
smaller than about 400 square miles. Due to the relatively short record lengths of precipitation
data available, frequency considerations could not be accurately determined. Other factors such
as regional climate and seasonality were not addressed.

Several newer methods have been published since TP-29 was developed and both the type and
guantity of precipitation data have increased significantly, along with computational resources
and analytical tools such as geographic information systems. This report reviewed and
assessed the available precipitation products and methods for conducting ARF analysis. The
work applied up-to-date precipitation data products and analysis methods with a novel
watershed-based approach to investigate how ARF estimates vary across different methods,
data sources, geographical locations, return periods, and seasons.

The overall findings reported here regarding basic ARF trends are in line with other recent
studies showing that ARFs decrease with increasing area, increase with increasing duration,
and decrease with increasing return period. This study found significant differences among the
available ARF methods. This work also found a strong geographical variability across different
US hydrologic regions, suggesting that the ARF are specific to regional climate patterns and
geographical characteristics and should not be applied arbitrarily to other locations. The results
also reveal the importance of data record length, especially for high return level ARFs.

The work reported in NUREG/CR-7271 will assist NRC staff in assessing different classes of
ARF methods in conjunction with available rainfall data sets. It will also support the development
of guidance for application of point precipitation data in PFHAs. It should be noted that the ARF
values presented in this report for any location or region were developed for the purposes of



comparing methods and investigating the factors that influence ARFs. They should not be
considered official and should not be used in leu of a site-specific analysis.



FOREWORD

This report (NUREG/CR-7271) documents work sponsored by the U.S. Nuclear Regulatory
Commission (NRC) as part of the RES project “Application of Point Precipitation Frequency
Estimates to Watersheds”. The research conducted supports the NRC’s Probabilistic Flood
Hazard Assessment (PFHA) program. The objective of the project was to assist NRC in
assessing different classes of fixed-area precipitation areal reduction factors (ARF) methods in
conjunction with available rainfall data sets to support the development of guidance for
application of PFHA. Given the limitations of available ARF products being used today (e.g., TP-
29) and with the advance of recent observational precipitation products and computational
capabilities, more comprehensive ARF evaluations can be made to understand how ARF
estimates vary across different methods, data sources, geographical locations, return periods,
and seasons. These topics are explored in this study.

This research is part of the NRC’'s PFHA Research Program and is to assist NRC in assessing
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to
support development of guidance for application of NPP-PFHA. The work will aid the
development of guidance on the use of PFHA methods and support risk-informing NRC'’s
licensing framework (flood hazard design standards at proposed new facilities as well as
significance determination tools for evaluating potential deficiencies related to flood protection at
operating facilities). The tools and guidance developed will support and enhance NRC’s
capacity to perform thorough and efficient reviews of license applications and license
amendment requests. They will also support risk-informed significance determination of
inspection findings, unusual events and other oversight activities.

NUREG/CR-7271 summarizes available precipitation products and methods for conducting ARF
analysis. Using this information, a series of use case studies are developed for both regional
ARF assessment and for contiguous U.S. (CONUS)-scale assessment. The use case findings
produce ARF relationships which are in line with available literature; they also demonstrate the
importance of precipitation data source and ARF fitting method which both contribute to ARF
uncertainty. In particular, the importance of available data length is highlighted given ARFs are
often sought for long return periods. The study demonstrates the need to improve ARFs with
new data and methods for more reliable areal extreme precipitation estimates to support PFHA
applications.

The main objective of this study is to assist NRC in assessing different classes of fixed-area
ARF methods in conjunction with available rainfall data sets to support the development of
guidance for application of PFHA. The results of this study are for demonstration purposes only
and are not intended to be used for ARF application. Additional research and development
efforts, with thorough quality assurance and control performed, should be performed to develop
a reliable national ARF product suitable for PFHA application.

The discussion of specific references, methods, software, or tools in this NUREG/CR does not
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory
Commission or Oak Ridge National Laboratory. The case study results presented herein are the
result of research efforts only, do not incorporate uncertainty quantification, and should not be
directly incorporated for application. They are intended to demonstrate some of the primary
factors affecting areal reduction factor estimation.
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EXECUTIVE SUMMARY

This research is part of the NRC’s PFHA Research Program and is to assist NRC in assessing
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to
support development of guidance for application of NPP-PFHA. The work will aid the
development of guidance on the use of PFHA methods and support risk-informing NRC’s
licensing framework (flood hazard design standards at proposed new facilities as well as
significance determination tools for evaluating potential deficiencies related to flood protection at
operating facilities). The tools and guidance developed will support and enhance NRC’s
capacity to perform thorough and efficient reviews of license applications and license
amendment requests. They will also support risk-informed significance determination of
inspection findings, unusual events and other oversight activities.

To support PFHA of nuclear power plants (NPPs), probabilistic estimates of extreme rainfall
depth across various watershed sizes are required. Nevertheless, most existing precipitation
frequency analysis (PFA) products (such as NOAA Atlas 14) provide frequency estimates of
“point” precipitation that can only be representative for a small domain and are not appropriate
for large-scale watershed modeling applications. The ARF examined in this study, which is the
ratio of areal extreme rainfall depth to point-based extreme rainfall depth, is one commonly-used
approach to derive areal extreme rainfall estimates from conventional point-based PFA
products.

An ARF can be generally defined as the ratio of areal extreme rainfall depth (i.e., total observed
rainfall volume across an area divided by the area of interest) to point-based extreme rainfall
depth (i.e., observed rainfall depth at a point location or for a representatively small area). The
use of ARF is necessary because networks of rain gauges with long periods of record, which
are needed for accurate areal rainfall frequency estimation, are generally sparse and do not
allow for an appropriate characterization of the associated spatial rainfall patterns. If the ARF
relationship is known, point-based PFA products and ARF can be used to approximate areal
extreme rainfall for a watershed.

Compared to modern PFA products, the progress of ARF development in the U.S. is relatively
slow, and the TP-29 ARFs published in the 1950s are still used in practice. These TP-29
estimates suffer from major limitations, including the use of very limited rain gauge data, the
application to only small area sizes, and the lack of variation across geographic location, return
period, and seasonality. Given these limitations and with the advance of recent observational
precipitation products and computational capabilities, more comprehensive ARF evaluations
can be made to understand how ARF estimates vary across different methods, data sources,
geographical locations, return periods, and seasons. These topics are explored in this study.

To improve the understanding of ARF variability, this study conducts a comprehensive review of
recent ARF research, summarizes potential precipitation products for ARF applications, and
provides use case studies to demonstrate the derivation of ARF in several selected hydrologic
regions in the U.S. The survey of available precipitation products covers several major
categories, including gauge-only, gauge-driven, radar-driven, satellite-driven, and reanalysis-
driven products. Each precipitation product is evaluated based on its availability, accuracy,
spatiotemporal resolution, latency, and suitability for ARF assessment. Several precipitation
products are subsequently selected for comparison in the use case studies.
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A review of ARF research identifies the key factors affecting ARF estimation, including storm
characteristics, geographic features, ARF methodology, and data. A critical review is conducted
to summarize available ARF methods across five major types: empirical methods, spatial
correlation methods, statistical crossing properties methods, spatial and temporal scaling
methods, and extreme value theory methods. Each method is evaluated by its data
dependency, required assumptions, analytical complexity, spatiotemporal scale, and whether it
has been independently evaluated in other studies. Several suitable ARF methods are then
selected and compared in the use case studies.

The use case studies implement a novel watershed-based annual maximum precipitation
searching approach to identify ARF samples across different watershed sizes for further ARF
model fitting. Through these use cases, a quantitative comparison of major factors affecting
ARFs is provided. The use cases include (1) regional assessments of ARFs for three selected
hydrologic regions focusing on different precipitation products, and fitting models to demonstrate
major factors affecting ARFs and (2) a CONUS assessment of ARFs across all hydrologic
regions, focusing on the use of one precipitation product and one fitting model to demonstrate
geographic variation in ARFs.

The use case study results are generally in line with available literature which suggest ARFs
decrease with increasing area, increase with increasing duration, and decrease with increasing
return period. The results also demonstrate the importance of precipitation data source and ARF
fitting method which both contribute to ARF uncertainty. In particular, the importance of
available data length is highlighted given ARFs are often sought for long return periods. The
study demonstrates the need to improve ARFs with new data and methods for more reliable
areal extreme precipitation estimates to support PFHA applications. Based on the results, ARF
characteristics and PFHA application challenges are also summarized in this report. The results
of this study are for demonstration purposes only and are not intended to be used for ARF
application.

The discussion of specific references, methods, software, or tools in this NUREG/CR does not
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory
Commission or Oak Ridge National Laboratory. The case study results presented herein are the
result of research efforts only, do not incorporate uncertainty quantification, and should not be
directly incorporated for application. They are intended to demonstrate some of the primary
factors affecting areal reduction factor estimation.
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1 INTRODUCTION

1.1 Background and Motivation

Extreme precipitation and subsequent flooding play major roles in infrastructure design and
engineered systems operation. For probabilistic flood hazard assessment (PFHA), probabilistic
estimates of extreme rainfall depth across various durations (e.g., T-year d-hour rainfall depth)
are key inputs for hydrologic and hydraulic (H&H) modeling. Such estimates are quantified
through precipitation frequency analysis (PFA) based on long-term rain gauge observations. To
avoid going through the entire chain of PFA (including rain gauge data collection and
processing, annual or partial duration maxima searching, probabilistic density function selection
and fitting, goodness-of-fit test, and regionalization), H&H engineers have often opted to look up
pre-calculated T-year rainfall depths from existing PFA products such as the U.S. Weather
Bureau Technical Paper No. 40 (TP-40; Hershfield, 1961) or its successor, the National Oceanic
and Atmospheric Administration (NOAA) Atlas 14 (Bonnin et al., 2004 and other volumes).
Spatiotemporal distribution and area adjustments are then applied to form rainfall hyetographs
for H&H modeling application.

However, one key feature that is easily overlooked is that most of the PFA products (including
NOAA Atlas 14) provide frequency estimates of “point” precipitation, meaning that the results
are representative only for a small domain and are not directly appropriate for large-scale
watershed modeling applications. This happens because the annual (or partial duration)
maxima of each rain gauge, which are the main inputs for PFA, are usually identified
independently in time. Therefore, although they capture the local maximum precipitation, they
do not jointly represent the areal maximum for a watershed. For instance, for watersheds
governed by small-scale convective storm systems, the annual maximum precipitation captured
by each gauge may be individually high but may result from different local thunderstorm events
occurring at different times. In directly using the gauge-based extreme rainfall estimates to build
design rainfall hyetographs for the entire watershed (without further adjustment), one may end
up creating an unrealistically large rainfall depth that is not supported by historic observations.

To properly identify areal extreme rainfall estimates for watershed-scale applications, one needs
to either (1) perform watershed-specific PFA that is based on precipitation maxima searched for
the entire watershed (rather than for individual rain gauges) or (2) use a suitable precipitation
areal reduction factor (ARF) to perform conversion (reduction) from point-based extreme rainfall
estimates to areal-based extreme rainfall estimates. Although the watershed-specific PFA
approach may theoretically be more precise, it involves much larger labor and resource efforts
that are not always feasible. On the other hand, the ARF approach can provide quick estimation
of areal extreme rainfall and hence has been a popular alternative in many H&H applications.

From a methodological perspective, the PFA methods (for either point-based or watershed-
specific assessments) have been more extensively studied. Since the publication of TP-40 in
1961, widely-recognized frequency analysis methods have been developed, including the
L-moment approach (Hosking and Wallis, 1992) that was used in the development of NOAA
Atlas 14. For ARF, while new methods have been developed in recent decades (see Section
3.2.2), research efforts in the United States (U.S.) are lagging, and there has yet to be a
national study of ARF comparable to NOAA Atlas 14. Some new ARF methods have been
developed to make use of modern spatiotemporal rainfall data (such as weather radar), while
some still rely upon rain gauge networks. However, none have found widespread acceptance
and use in H&H engineering practice.



With H&H engineering applications and PFHA efforts requiring watershed-scale probabilistic
precipitation estimates, there is a need to better understand how ARF methods can be applied
to more effectively leverage existing point-based PFA products (such as NOAA Atlas 14). These
considerations motivate the study described in this report.

1.2 Nuclear Regulatory Context

The U.S. Nuclear Regulatory Commission (NRC) has developed regulations regarding the siting
and design of nuclear power plants (NPPs) which consider various natural hazards, including
flooding. Code of Federal Regulations (CFR) Title 10, Part 50 and Part 52, address design
criteria for NPPs with respect to natural hazards, whereas 10 CFR Part 100 addresses siting
criteria. Title 10 CFR Part 50, Appendix A, General Design Criterion (GDC) 2, “Design bases for
protection against natural phenomena,” states that structures, systems, and components
important to safety shall be designed to withstand the effects of natural phenomena that have
been historically reported for the site and surrounding area, with sufficient margin for the limited
accuracy, quantity, and period of time in which the historical data have been accumulated. The
regulation also states that the design bases shall reflect appropriate combinations of the effects
of normal and accident conditions with the effects of the natural phenomena.

Title 10 CFR Part 52, more specifically 10 CFR Part 52.17(a)(1)(vi), for early site permits (ESPs)
and 10 CFR Part 52.79 (a)(1)(iii) for combined licenses provide the requirements for new
reactor applications as they relate to the hydrologic characteristics of the proposed site. These
regulations require consideration of the most severe of the natural phenomena that have been
historically reported for the site and surrounding area and with sufficient margin for the limited
accuracy, quantity, and period of time in which the historical data have been accumulated. The
requirements to consider physical site characteristics (including hydrologic features) in site
evaluations are specified in 10 CFR Part 100.10(c) for applications before January 10, 1997,
and 10 CFR Part 100.20(c) for applications on or after January 10, 1997.

NRC regulatory guidance for flood hazard assessments currently focuses on using
deterministically derived, conservative estimates of key flood-causing mechanisms (e.qg.,
probable maximum precipitation [PMP], probable maximum flood [PMF]) to provide the
“sufficient margin” called for in the regulations. The magnitude of the provided margin is not
explicitly quantified in either a physical or risk perspective. Probabilistic treatment of flood
hazard phenomena can provide quantitative estimates of the flood safety margin and thus
contribute to the risk-informed assessment of flooding hazards, but regulatory guidance on the
use of probabilistic methods for riverine flood hazard assessment at NPP sites is lacking.

1.3 Areal Reduction Factors

An ARF can be generally defined as the ratio of areal extreme rainfall depth (i.e., total observed
rainfall volume across an area divided by the area of interest) to point-based extreme rainfall
depth (i.e., observed rainfall depth at a point location or for a representatively small area). For
instance, for a watershed A of interest, given that P, is the areal average extreme rainfall depth
estimate for the entire watershed (can be derived from watershed-specific PFA) and P, is the
representative point-based extreme rainfall depth within the watershed (can be determined from
existing PFA products), the ARF can be formulated as

ARF =¥ 1)

Py’



Since the value of Py, should be always smaller than that of P,;, the value of ARF should be less
than 1. Also, when the watershed area is very small, it is expected that the value of P, will
approach P,; and hence ARF will have an upper bound of 1 when a watershed area
approaches 0.

The use of ARF is necessary because networks of rain gauges with long periods of record,
which are needed for accurate areal rainfall frequency estimation, are generally sparse and do
not allow for an appropriate characterization of the associated spatial rainfall patterns. If the
ARF relationship is known, point-based PFA products and ARF can be used to approximate
areal extreme rainfall for a watershed. This approach has been used in many hydrologic
applications, including stormwater management (e.g., MGNDCT, 2012; CWCB, 2006) and dam
safety assessment (e.g., USBR, 2004). In the U.S., the most commonly used ARF chart was
published by the U.S. Weather Bureau in the five-part Technical Paper No. 29 (TP-29; U.S.
Weather Bureau, 1957, 1958a, 1958b, 1959, 1960). The same ARF chart (Figure 1-1) was
provided for all TP-29 regions with durations ranging from 30-minute to 24-hour durations and
watershed sizes up to 1,036 km? (400 mi?).
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Figure 1-1 TP-29 ARF Curves (Source: U.S. Weather Bureau, 1957)

Although the TP-29 ARF chart was published decades ago, it is still used in many engineering

applications. Considering current data, methodology, and numerical standards, this practice is
problematic from several perspectives:

e The TP-29 ARFs are based on very limited data (approximately 20 rain gauges from a
dense network with an average record length of about 11 years). Newer, high-resolution
spatial rainfall observations have not been incorporated to update TP-29.

e The TP-29 ARFs are available only for relatively small areas (less than 1,036 km? [400
mi?]). Many NPP watersheds are far larger than this threshold.



e The TP-29 ARFs do not vary with geographic location (i.e., the same ARFs are used
across the five regions of TP-29). This condition implies that the same ARF values can
be applied regardless of local climate conditions, which is inconsistent with findings from
other follow-up ARF studies.

e The TP-29 ARFs do not vary with return period, which is inconsistent with findings from
many follow-up ARF studies.

e The TP-29 ARFs do not vary with season, which is questionable since the controlling
extreme rainfall processes in a region can be quite different across warm and cool
seasons.

Clearly, there is a need to update ARFs based on improved data and methods. With the
advance of recent observational precipitation products and computational capabilities, more
comprehensive ARF evaluations can be made to understand how ARF estimates vary across
different methods, data sources, geographical locations, return periods, and seasons. These
topics are explored in this study.

1.4 Fixed-Area versus Storm-Centered ARFs

In the context of PFHA, the goal of ARF is to bridge point-based and areal-based probabilistic
extreme rainfall estimates. Therefore, the annual (or partial duration) maximum precipitation
samples used in ARF analysis should also be searched following a similar approach to the
maxima for PFA (i.e., precipitation maxima searched with a given spatial-filter and d-hour
temporal window at a specific geographic location). Under this approach, the identified
maximum samples represent the highest precipitation depth within a d-hour window, in which it
may be a subset of a long-term rainfall event or composed of multiple sequential short-term
rainfall events. In any case, these maxima represent the heaviest precipitation observed within a
d-hour window at a selected location of interest, which is important for forming the most critical
design events for H&H modeling application. In other words, ARFs for use with precipitation
frequency estimates are normally referred to as “fixed-area” (or “geographically-fixed-area”)
methods. Further formulation and discussion of maximum precipitation searching through the
“fixed-area” approach are provided in Section 4.3.1 of this report.

To avoid potential confusion, it should be clarified that the “fixed-area” ARFs are distinct from
“storm-centered” ARFs that are developed based on the analysis of individual storm events. The
storm-centered ARFs are usually seen in storm-based, deterministic PMP analysis. Through the
analysis of major historic storms, the maximum average rainfall depths across various durations
and storm areas are identified; then they are presented in the form of depth-area-duration
(DAD) tables or curves. By calculating the depth ratios between different cells in the DAD table,
the storm-centered ARFs can be formed.

While both types of ARFs are used in flood hazard assessments, because of their different
methodological features, their areas of application are distinct; thus, they should not be mixed.
Because of a lack of formal PFA considerations, it is challenging to assign frequency and risk
estimates to storm-centered ARFs. Numerically speaking, the values of storm-centered ARFs
are smaller than those of fixed-area ARFs (Sivapalan and Bléschl, 1998; Svensson and Jones
2010); hence, applying storm-centered ARFs in PFHA (without further adjustment or treatment)
will lead to underestimation of areal extreme precipitation estimates.
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Given the specific objective to explore issues associated with ARFs for future PFHA
applications, this research effort focuses only on fixed-area ARFs.

1.5 Research Objective

The objective of this study is to assist NRC in assessing different classes of fixed-area ARF
methods in conjunction with available rainfall data sets to support the development of guidance
for application of NPP PFHA. As mentioned in Section 1.2, NRC regulatory guidance for flood
hazard assessments is currently deterministic in nature and does not enable explicit
guantification of flood safety margin. In contrast, probabilistic approaches to flood hazard
assessment could contribute to the risk-informed assessment of flooding hazards. However,
regulatory guidance on the use of probabilistic methods for riverine flood hazard assessment at
NPP sites is lacking.

This research project is part of the NRC’s PFHA Research plan.! The work will aid the
development of guidance on the use of PFHA methods and support informing NRC'’s licensing
framework regarding risk (flood hazard design standards at proposed new facilities, as well as
significance determination tools for evaluating potential deficiencies related to flood protection at
operating facilities). The tools and guidance developed will support and enhance NRC’s
capacity to perform thorough and efficient reviews of license applications and license
amendment requests. They will also support risk-informed significance determination of
inspection findings, unusual events, and other oversight activities.

This report summarizes the overall findings from this ARF project. The report is organized into
the following sections:

e Section 2 provides a summary of available precipitation data products that can
potentially be used for ARF assessment.

e Section 3 provides a critical review of available ARF methods with a view to addressing
the deficiencies in the commonly used methods for PFHA.

e Section 4 demonstrates the use of the promising method/data set combinations for ARF
estimation using case studies for selected river basins.

e Section 5 provides the overall conclusion and recommendations for the development
and application of ARF in future PFHA studies.

It should be emphasized that the main purpose of this research project is to improve the overall
understanding of ARFs to support broader NPP PFHA efforts. However, the goal is not to
provide national ARF estimates for direct applications. In the authors’ view, the application of
ARF for flood hazard assessment requires further site- or watershed-specific considerations,
and it is not within the scope of this project to provide application-ready ARFs for a wide variety
of potential usages. The discussion of specific references, methods, software, or tools in this
report also does not constitute an endorsement or approval for any specific use by the NRC or
Oak Ridge National Laboratory (ORNL). The case study results presented herein are the result
of research efforts only, do not incorporate uncertainty quantification, and should not be directly

1The NRC PFHA Research Plan (Version 2014-10-23) is available online at
https://www.nrc.gov/docs/ML1429/ML14296A442.pdf

1-5


https://www.nrc.gov/docs/ML1429/ML14296A442.pdf

incorporated for application. They are intended to demonstrate some of the primary factors
affecting areal reduction factor estimation.
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2 PRECIPITATION PRODUCTS FOR ARF ANALYSIS

In this section, various existing precipitation products that can potentially be used for ARF
analysis are reviewed and discussed. Each precipitation product is evaluated based on its
availability, accuracy, spatiotemporal resolution, latency, and suitability for ARF assessment.
Several precipitation products are subsequently selected for comparison in the use case studies
as described in Section 4.

2.1 Overview of Precipitation Products

The U.S. government began taking organized weather observations through the establishment
of the Army-operated Weather Bureau in 1870. Following the deadly rain-induced South Fork
Dam failure near Johnstown, Pennsylvania, Congress established the weather service in 1890
as a civilian agency by transferring the meteorological duties of the Army Signal Service to the
newly created Weather Bureau in the Department of Agriculture. Soon thereafter, the nation’s
largest and oldest weather network, the Cooperative Observer Program (COOP), was
established in 1891. At that time, more than 2,000 weather stations were recording observations
by volunteers; today more than 11,000 COOP volunteers record weather observations across
the country. The current National Weather Service (NWS) was established in 1970 as part of
the NOAA within the Commerce Department (National Ocean Service, 2018; National Weather
Service, 2017a; National Weather Service, 2018).

Over the years, various technology advancements have enabled increased spatial and temporal
precipitation observation coverage in the U.S. Standard rain gauges have been installed across
all U.S. states and territories. During World War Il, military radar operators who had noticed
returned echoes from precipitation began developing operational weather radars. Further
development of radar in the 1940s provided a way to measure weather-related phenomena
across wide areas using a single device or network of devices, and the first radar designed
specifically for meteorological use was unveiled in 1954. In the late 1950s, weather satellites
were developed and launched, enabling long-distance meteorological observations made from
orbit. In the 1990s, meteorological reanalysis data sets were first produced to derive
meteorological estimates based on incomplete observational data and simulated atmospheric
processes; such reanalysis products have been used primarily for climate assessments.
Additional information and detailed descriptions of gauge, radar, satellite, and meteorological
reanalysis products are provided in Section 2.2.

2.1.1 Categories of Precipitation Products

Regarding the use of the term “data,” while the precipitation products described herein are
developed based on various information types and methodologies, many products do not
provide direct precipitation measurement. Gauge observations provide direct precipitation
measurement; however, radar, satellite, and reanalysis products include interpretative
precipitation estimates computed through various methods. Although data sets are developed
for each precipitation product, it is important to note the difference between direct precipitation
measurements and indirect estimates.

In this report, precipitation products are organized into five different categories:

e Gauge-only: direct rain gauge observations (for more information, see Section 2.2.1)
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o Gauge-driven: gridded estimates produced from a series of rain gauges (for more
information, see Section 2.2.2)

o Radar-driven: estimates produced from a radar network, often merged with gauge
estimates (for more information, see Section 2.2.3)

e Satellite-driven: estimates produced from satellites, often merged with gauge estimates
(for more information, see Section 2.2.4)

e Reanalysis-driven: reconstructed historical weather using global or regional weather
forecasting models (for more information, see Section 2.2.5)

2.1.2 Key Metrics for Consideration

To develop areal precipitation frequency estimates and/or ARF, various metrics may be useful
in considering the quality of available precipitation products. Among the most important metrics
are the following:

o Accuracy/precision: How reliable are the precipitation estimates available from the
product, and what sources of error and uncertainty exist? (See the product-specific
sections later in this report for more information on product error and uncertainty.)

e Temporal coverage: For what time period are the precipitation estimates available, and
are there any gaps in temporal coverage?

o Data latency: How regularly are the precipitation estimates uploaded online?

e Spatial coverage: For what regions are the precipitation estimates available?

e Temporal resolution: How frequently are precipitation estimates provided?

e Spatial resolution: For what horizontal spacing or area size are individual precipitation
estimates available?

Ideally, to derive reliable ARF and/or areal extreme rainfall estimates through PFA, one would
use precipitation products with the lowest measurement uncertainties (such as gauges), longest
records (preferably more than 30 years of records), highest spatial density and largest spatial
coverage (to capture extreme rainfall depth across various storm areas), and hourly or
subhourly temporal resolution (to capture local intense precipitation). However, such criteria are
unlikely to be satisfied universally across all parts of the U.S. Depending on data availability,
controlling extreme rainfall types, and the selected ARF method in a watershed of interest, a
preferred precipitation product or a mix of various products may be required.

2.2 Summary of Available Precipitation Products

For a detailed comparative summary of the available precipitation products available in the U.S.,
please see Appendix A.

Each of the following subsections provides a general overview, metric-based description, and
error and uncertainty discussion of the available precipitation products.
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2.2.1 Gauge-only Precipitation Data Sets

Gauge-based precipitation observations are collected from a variety of sources across the U.S.
Most measurements are made using either standard 8-inch (20-cm) diameter non-recording rain
gauges or Fischer-Porter recording rain gauges. Standard rain gauges include a funnel
emptying into a graduated cylinder positioned inside a larger container for overflow. Fischer-
Porter rain gauges mechanically convert the water weight into precipitation depth and record
every 15 minutes. Tipping buckets are also used to automatically record precipitation
accumulations. Some gauges may include heating capabilities to melt frozen precipitation for
accurate measurement (National Weather Service, 2017b; Kuligowski, 1997). Wind shields are
sometimes installed in locations where wind effects that reduce gauge catch cannot be reduced
by site selection.

2.2.1.1 Product Description

For all U.S. states and territories, NOAA National Centers for Environmental Information (NCEI)?
provide hourly and 15-minute precipitation gauge data (items 1 and 2 in Table A-1). At the time
of this report’s preparation,® observations since 2013 had not yet been publicly released for both
data sets. The hourly data set (DSI-3240) includes measurements from more than 7,000 NWS,
Federal Aviation Administration (FAA), and COOP stations in the U.S. and U.S. territories, with
data available since 1940 for some stations. The 15-minute data set (DSI-3260) includes
measurements from more than 3,600 NWS, FAA, and COOP stations in the U.S and U.S.
territories, with data available since 1970 for some stations. The hourly and 15-minute stations
mostly consist of Automated Weather and Observing System (AWOS) units, primarily managed
by the FAA, and Automated Surface Observing System (ASOS) units, managed cooperatively
by the NWS, FAA, and Department of Defense.

NOAA NCElI also provides a Global Historical Climatology Network (GHCN) database consisting
of more than 100,000 stations reporting daily precipitation worldwide (item 3 in Table A-1). Data
are available since 1870 for some stations, and the station data are updated every month. Data

in the U.S. have been collected from FAA; COOP; the Community Collaborative Rain, Hail, and

Snow Network (CoCoRaHS); and other daily data sources.

2.2.1.2 Error and Uncertainty

In general, gauged data are considered “ground truth” for precipitation estimates. The three
NOAA NCEI data sets represent actual observed measurements that may offer the most
accurate precipitation estimates at point locations. Gauge observations have historically been
used as the main input in PFA products (including NOAA Atlas 14). However, since the data
collected are point measurements, they may not be representative of a region and are thus
commonly used to produce gridded products or to calibrate radar products.

Aside from tipping error, wetting loss, and potential mechanical failure, the most apparent error
with gauged data is undercatch, which may occur during measurement, especially during windy
or snowy conditions (Sieck et al., 2007; Mekonnen et al., 2015). A comprehensive review of
possible sources of rainfall observation uncertainty is presented by McMillan et al. (2012).
Overall, existing literature suggests undercatch of gauges mounted at a 1 m height could have

> Formerly the National Climatic Data Center (NCDC) before dissolving in 2015.
s Data accessed in February 2019.



5-16% error on average and 0—75% error per storm. Wind field deformation may cause 2—-10%
error for rain and 10-50% error for snow, wetting loss can cause 2—15% error in summer and 1—
8% error in winter, and tipping error per 1 mm of rain can be up to 10%, depending on gauge
type and rain rate (see Table 1 of McMillan et al. [2012] for further information).

Unlike the DSI-3240 and DSI-3260 data sets, the GHCN data set pulls from CoCoRaHS. This
network of volunteer observers represents a significant source of precipitation observations but
iS not subject to a strict quality control protocol. While volunteers are encouraged to complete
training courses, it is not required. Limited automated, web-based checks and personnel checks
are conducted to identify errors, but the nature of a volunteer network introduces increased error
potential compared with a federally managed and quality-controlled network.

The distribution of gauged data in both time and space is inconsistent, making precipitation
estimates for certain locations difficult. For example, gauge coverage over some of the
mountains, deserts, and plains of the western U.S. and Great Plains is sparse and could
increase uncertainty in spatially interpolating precipitation estimates. In addition, with the
diversity of gauge types available, differences in instrument performance (e.g., undercatch) can
affect results, and correction may be needed in merging data.

2.2.2 Gauge-driven Precipitation Products

Given the temporal and spatial variability among observing gauge locations, gauge-driven
precipitation products provide a useful way to assimilate individual gauge data and provide
gridded estimates.

2.2.2.1 Product Description

Gauge-driven precipitation products are gridded products that (primarily) process daily gauge-
based data to form gridded estimates (items 4-9 in Table A-1). During the gridding process,
topographical, orographical, or statistical adjustments are made in many of the products.
Therefore, gridded precipitation products are not simple spatial interpolations across available
gauge observations.

Daymet, maintained by ORNL, provides daily gauge-based gridded precipitation estimates for
1980-2017 throughout all of North America at a 1-km horizontal resolution (Thornton et al.,
1997 and 2017; item 4 in Table A-1). Daymet currently offers the highest spatial resolution
among all publicly available gauge-based gridded precipitation data sets in the U.S. Daymet
estimates include topographical adjustment based on elevation. However, since Daymet did not
fully resolve rain shadow barrier effects, it may overestimate precipitation in the mountainous
regions (e.g., in many parts of the western U.S.). The Daymet data set is currently updated
annually.

Another widely used, gridded precipitation product is the Parameter-elevation Regressions on
Independent Slopes Model (PRISM; Daly et al., 1994) data set, produced by the Oregon State
University. With a daily temporal resolution, PRISM has offered gridded precipitation estimates
since 1981 for the lower 48 U.S. states (i.e., the Contiguous U.S. [CONUS]) at a 1/24° (~4 km)
horizontal resolution (item 5 in Table A-1). PRISM brings a combination of climatological and
statistical concepts to the analysis of orographic precipitation. Given PRISM’s ability to account
for topographical effects and some other orographic adjustment factors (Daly et al. 2002), it is
one of the best available grid-based meteorological data sets. NOAA Atlas 14 also used the
PRISM spatial interpolation algorithm in its assessment. The daily PRISM is a relatively recent



product of the widely used monthly PRISM data set, which has offered monthly gridded
precipitation estimates since 1900 at the same 4-km horizontal spacing. The gridded daily
PRISM data are updated automatically and are partially assimilated with radar data in its post-
2002 daily precipitation output. An 800-m horizontal resolution data set is also available for a fee
from the PRISM website.

The Livneh Daily CONUS Near-surface Gridded Meteorological Data produced by the University
of Colorado offers daily gauge-based gridded precipitation estimates for 1950-2013 for the
CONUS, Mexico, and the part of Canada south of 53°N at a 1/16° (~6 km) horizontal resolution
(Livneh et al., 2015; item 6 in Table A-1). The Livneh product builds upon (and essentially
replaces) the previous Maurer Gridded Meteorological Data product from Santa Clara
University, which provides daily gauge-based gridded precipitation estimates for 1949-2010 for
the CONUS and British Columbia in Canada at a 1/8° (~12 km) horizontal resolution (Maurer et
al., 2002; item 7 in Table A-1). Both the Livheh and Maurer data sets include elevation-based
topographical adjustments. They have been widely used as the meteorological input to drive the
Variable Infiltration Capacity hydrologic model (VIC; Liang et al. 1994 and 1996) in many hydro-
climatic studies (e.g., Bennett et al., 2018; Gutmann et al., 2014; Mizukami et al., 2017,
Sheffield et al., 2006; Wood et al., 2004).

The NOAA Climate Prediction Center (CPC) produces the CPC Unified Gauge-based Analysis
of Daily Precipitation over CONUS, which provides daily gauge-based gridded precipitation
estimates for 1948-2006 for the CONUS at a 1/4° (~25 km) horizontal resolution (item 8 in
Table A-1). Given its coarser spatial resolution, topographic and orographic adjustments were
not applied. This can lead to underestimated precipitation in mountainous regions.

Compared with the previous gridded precipitation products (items 4-8 in Table A-1), the
National Center for Atmospheric Research (NCAR) Gridded Ensemble Precipitation and
Temperature Estimates over the Contiguous United States (Newman et al., 2015; item 9 in
Table A-1)—available from 1980-2012 for the CONUS, northern Mexico and southern Canada
at a 1/8° (~12 km) horizontal resolution—is a conceptually different product. Newman et al.
(2015) expanded the concept of probabilistic interpolation by Clark and Slater (2006). Instead of
providing only one set of most likely values (as is provided by other gridded products), Newman
et al. (2015) provided a 100-member ensemble of historic precipitation in which each realization
is embedded with spatially-correlated random signals to account for the uncertainties from
measurements and other sources. Although each ensemble member is different, their collective
ensemble mean is similar to those of other gridded precipitation data sets. This data set can be
easily used for ensemble hydrologic simulation to understand how uncertainties may propagate
through different steps of H&H modeling.

2.2.2.2 Error and Uncertainty

For gridded gauge-driven precipitation products, any error or uncertainty in the gauge data
propagates to the gridded applications. Spatial smoothing may help reduce some of the errors
or uncertainties presented from a single station, but such benefits have not been quantified.

One of the major differences among the various gridded products (also a source of uncertainty)
is how precipitation is spatially distributed over complex terrain. PRISM spatially distributes
precipitation using precipitation/elevation regressions. Daymet spatially distributes precipitation
through an iterative station density algorithm. Livneh spatially distributes precipitation over
complex terrain using a satellite-based estimate of peak snow water equivalent. Maurer spatially
distributes precipitation using PRISM. An intercomparison of gridded precipitation data sets



covering PRISM, Daymet, Livneh, and Newman in the western U.S. by Henn et al. (2017)
suggested that the greatest absolute differences in annual total precipitation occurred in
maritime mountain ranges and high-elevation areas of the Western U.S. (200 mm/year or
greater on average, around 5-60%). Oubeidillah et al. (2014) compared the mean and 95%
percentiles of PRISM, Daymet, and Maurer and suggested that higher-spatial-resolution data
sets (i.e., PRISM and Daymet) performed better than the coarser-resolution data sets,
particularly in capturing precipitation extremes.

2.2.3 Radar-driven Precipitation Products

While early weather radar systems (e.g., WSR-57 and WSR-74) enabled detection of
precipitation in the atmosphere, a major breakthrough came through the development and
deployment of Doppler radar. The Next-Generation Radar (NEXRAD), WSR-88D Doppler radar,
was developed in the 1970s and 1980s and achieved first operational use in 1992. Beyond
detecting the position of precipitation, Doppler radar also captures movement toward or away
from the radar by sending horizontal radio waves and interpreting the shift in response (NCEI,
2018; Rinehart, 1997). Another major breakthrough came with the development of dual-
polarization Doppler radar, in which both horizontal and vertical waves are sent. The addition of
vertical wave transmittal provides information on the vertical motion of particles and helps
distinguish differences in precipitation type (e.g., rain, hail, or snow). Dual polarization was
added to existing WSR-88D radars starting in 2010, and by 2013 all NEXRAD radars were
equipped with dual polarization. For a more detailed description of dual-polarization radar, see
Cifelli and Chandrasekar (2013). The NEXRAD system currently comprises 160 sites
throughout the United States and select overseas locations (NCEI, 2018).

2.2.3.1 Product Description

A series of data post-processing steps are required to convert the measured radar reflectivity
into estimated rainfall depth. Multiple radar-driven precipitation products are available and
include varying levels of post-processing and/or bias correction. These products are introduced
below and presented in order from lowest to highest complexity.

The most fundamental radar-driven rainfall products are NEXRAD Level-ll and Level-Ill. The
NCEI provides NEXRAD Level-Il and Level-lll data for most of the United States (item 10 in
Table A-1) and U.S. territories. Measurements are updated automatically and are made every 4
to 10 minutes. The WSR-88D radars originally provided radar reflectivity at 1.0 degrees
azimuthal by 1 km range gate resolution to a range of 460 km, and Doppler velocity and
spectrum width at 1.0 degree azimuthal by 250 m range gate resolution to a range of 230 km. In
2008, the WSR-88D radars were upgraded with increased spatial resolution (referred to as
“super resolution”) to provide radar reflectivity at 0.5 degrees azimuthal by 250 m range gate
resolution to a range of 460 km, and Doppler velocity and spectrum width at 0.5 degree
azimuthal by 250 m range gate resolution to a range of 300 km. Level-II data contain initially
processed (base) data at high resolution and are essentially raw data. These data include
reflectivity, radial velocity, spectrum width for single-polarization radar and the addition of
differential reflectivity, co-polar correlation coefficient, and differential phase for dual-polarization
radar. Level-lll data include further processed data at a lower resolution deemed more
appropriate for common use. Over 75 Level-1ll products are routinely provided by NCEI, and the
precipitation-specific data include 1-hour, 3-hour, and total storm precipitation. Both Level-ll and
Level-1ll products are derived solely from NEXRAD radar observations (NCEI, 2018).



To support operational river forecasting, the NOAA/NWS National Centers for Environmental
Prediction (NCEP) and River Forecasting Centers (RFCs) further conduct a series of data
processing efforts to increase the accuracy of radar-driven rainfall estimates. These efforts were
originally structured into four consecutive stages (Stage | to Stage 1V), although the structure
has been revised with the advancement of procedures and technologies. Some terminologies
are still in use now but with adjusted meanings (NOAA, 2018):

e Stage | referred to the radar-only digital precipitation arrays (DPASs) that use radar
reflectivities to estimate rainfall depth on 4 km, 131x131 polarstereographic grids
centered on individual radar sites. Note that one main difference between Level-ll/1ll and
Stage | products is the different spatial grids.

e Stage Il referred to the merged data of Stage | and automatic rainfall gauge
observations (available since 1996 in the CONUS; item 11 in Table A-1). In the past, this
process was carried out at each of the 12 CONUS RFCs, as well as at the NCEP, and
was used as input for Stage Ill. With the change of process from Stage lll to quantitative
precipitation estimates (QPE) at RFC, the meaning of Stage Il has changed. Currently,
Stage Il refers to the multisensor product that has not undergone quality control (QC),
which is generated directly from the radar and gauge data at NCEP (i.e., NCEP Stage

).

e Stage lll referred to the 1-hour and 6-hour analyses conducted by RFCs based on RFC-
mosaicked Stage Il with manual QC (available since 2002 in all 14 RFCs; item 12 in
Table A-1). Currently most RFCs have transitioned from Stage Il to multisensor
precipitation estimator. Western RFCs have transitioned to Mountain Mapper, and
Arkansas-Red Basin RFC is using a local bias adjustment algorithm. The regional 1-
hour/6-hour estimates provided by RFCs to NCEP are collectively called QPE.

o Stage IV referred to the final radar-driven rainfall product produced at NCEP (available
since 2002 in the CONUS, excluding the California-Nevada and Northwest RFCs; item
13 in Table A-1). It is based on the QPEs (after manual QC) provided by the RFCs.
NCEP merges all RFC QPEs into a national NCEP Stage IV product.

The Multi-Radar/Multi-Sensor System (MRMS) produced by the NOAA National Severe Storms
Laboratory provides automatic 2-minute resolution precipitation estimates based on a series of
algorithms integrating radar and gauge data with lightning detection systems and forecast
models (item 14 in Table A-1). The information produced is mostly used for extreme weather
forecasting and other purposes, and historical simulations are not publicly archived. The
CONUS and adjacent portions of Canada and Mexico are covered by MRMS.

2.2.3.2 Error and Uncertainty

Although radar can capture the spatial distribution of extreme storms that cannot be measured
by conventional gauges, the accuracy of radar-based precipitation products can be limited by
nonlinear reflectivity-rainfall relationships, variations in vertical reflectivity, blockages, and spatial
and temporal sampling (AghaKouchak et al., 2010). Because of some coverage gaps and
limitations of radar penetration in mountainous terrain, radar data are not available in some
parts of the U.S. Krajewski et al. (2010) compared radar rainfall estimates and rain gauge
observations for 20 selected storms and reported around 15-91% average differences. From a
statistical sampling perspective, unlike rain gauges that continuously measure cumulative
precipitation at a fixed location, radar rainfall is based on measurements of instantaneous
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reflectivity during each scan (currently every 4-10 minutes). The intrinsic assumptions are that
the scan interval is sufficiently short, and each instantaneous scan can be representative for the
entire interval. Nevertheless, given the high variability of extreme storms, such assumptions
involve high uncertainties, and hence further adjustments and assimilation using gauge
observation are required. An evaluation performed by Gourley et al. (2010) suggests that the
Stage IV product has the highest correlation coefficient to gauge observations among various
gridded rainfall products. Cunha et al. (2013) find that dual-polarization radars generally provide
lower error than single-polarization radars, but that the error is fundamentally dependent on
range sampling; radar rainfall error is found to decrease for larger temporal and spatial scales.
Seo et al. (2015) also find dual-polarization to provide higher accuracy than single-polarization.

2.2.4 Satellite-driven Precipitation Products

Satellites have been used to observe weather phenomena for decades, with temperature
measurements first recorded in the late 1960s and precipitation measurements becoming
available in the 1990s. Precipitation detection is accomplished through the use of radar,
microwave imaging, and lightning sensors.

2.2.4.1 Product Description

In 1997, a joint effort between the National Aeronautics and Space Administration (NASA) and
Japan Aerospace Exploration Agency (JAXA) launched the Tropical Rainfall Measuring Mission
(TRMM) satellite equipped with the first orbiting precipitation radar. Before ending its mission in
2015, the TRMM orbited at an elevation of approximately 400 km and completed an orbit every
92.5 minutes. The TRMM Multi-Satellite Precipitation Analysis (TMPA) merges the data
collected from TRMM with data from other satellites, gauges, and other sources to produce 3-
hourly precipitation estimates at a 1/4 deg (~25 km) horizontal resolution (item 15 in Table A-1).
Global coverage is provided from 60 degrees S to 60 degrees N. Although the TRMM went
offline in 2015, TMPA products were still produced through early 2018.

NASA and JAXA jointly launched TRMM'’s replacement, the Global Precipitation Measurement
(GPM) international satellite mission, in 2014 (item 16 in Table A-1). GPM provides global
coverage from 60 degrees S to 60 degrees N. Compared with TMPA, GPM provides higher
spatial and temporal resolution, offering 30-minute precipitation accumulations at a resolution of
0.1 deg (~10 km).

2.2.4.2 Error and Uncertainty

Given satellites’ broad spatial coverage, TRMM is a valuable resource for regions without a
dense gauge network or weather monitoring radars. However, the use of satellite-based
precipitation products is not advantageous in many parts of the U.S. given the existence of
various gauge- or radar-based precipitation products.

From a statistical sampling perspective, satellite-based precipitation products also suffer from a
similar but more severe measurement issue compared with weather radar. Though using a
multi-satellite approach can increase measuring frequency, significant inconsistencies and gaps
in temporal coverage exist which may decrease accuracy compared with radar and gauge
estimates. Several studies have reported that systematic error in satellite measurements
increases as the rain rate increases (AghaKouchak et al., 2012). Petkovic and Kummerow
(2017) evaluate the source of error in passive TRMM microwave imager sensors over certain
regions. Tian and Peters-Lidard (2010) present a global map of measurement uncertainty in



satellite-based precipitation estimates, finding higher uncertainty nearer the poles. An evaluation
performed by Gourley et al. (2010) suggests that Stage IV provides more accurate precipitation
measurements than TRMM. The use of satellite-based precipitation products is most beneficial
for regions with a minimum number of rain gauges and without reliable radar measurement,
such as parts of the mountainous western United States.

2.2.5 Reanalysis-driven Precipitation Products

Meteorological reanalysis products have been widely used by the meteorological, climatological,
and hydrological communities in understanding historic weather patterns. Meteorological
reanalysis provides reconstructed historic weather simulations using global weather forecasting
models with observations collected from various instruments (but not rainfall depth from rain
gauges until recently; see Reichle et al., 2017). The simulations provide comprehensive
shapshots of 3-dimensional meteorological conditions (e.g., wind, pressure, total precipitable
water) at regular intervals over long time periods, often years or decades (Parker, 2016). There
have been multiple international efforts to generate reanalysis data sets to support various
missions.

2.2.5.1 Product Description

NOAA NCEP has produced several precipitation reanalysis data sets, including NCEP/NCAR
Reanalysis 1 (item 17 in Table A-1), NCEP/Department of Energy Reanalysis 2 (item 18 in
Table A-1), North American Regional Reanalysis (NARR; item 19 in Table A-1), and Climate
Forecast System Reanalysis (CFSR; item 20 in Table A-1). Reanalysis 1 offers 6-hourly global
precipitation estimates at a 1.875° horizontal resolution for the period since 1948 and is updated
daily. Reanalysis 2 provides similar information, is available from 1979, and is updated monthly.
CFSR provides similar global information and coverage as Reanalysis 2 but includes an
enhanced 0.313° (~35 km) horizontal resolution and has started to incorporate gauge rainfall
observations in its data assimilation. NARR is a specific use case of the high-resolution NCEP
Eta Model to provide 3-hourly precipitation estimates over North America at a 32 km resolution;
data are available from 1979 to 2014, and no update is currently scheduled.

NASA produces the Modern-Era Retrospective analysis for Research and Application, Version 2
(MERRA-2; item 21 in Table A-1), which offers global hourly precipitation estimates at a 0.5°
latitude by 0.625° longitude resolution and has been available since 1980. Compared with
NCEP reanalysis, NASA reanalysis uses more remotely sensed information courtesy of NASA
satellites. MERRA-2 has also started to incorporate gauge rainfall observations in its data
assimilation system.

The Japan Meteorological Agency produces the Japanese 55-year Reanalysis (JRA-55; item 22
in Table A-1), which offers global 3-hourly precipitation estimates at a 55-km horizontal
resolution and is available since 1958.

The European Centre for Medium-Range Weather Forecasts produces the ERA-Interim
reanalysis product, which offers global 6-hourly precipitation estimates at a 0.7° (~78 km)
horizontal resolution and is available from 1979 (item 23 in Table A-1). ERA-Interim will be
replaced in 2019 by ERA5, which will offer 31-km global resolution (compared with 79-km in
ERA-Interim), hourly data (compared with 6-hourly in ERA-Interim) and improved atmospheric
parameterization.



2.2.5.2 Error and Uncertainty

Among the various types of precipitation products summarized in this report, reanalysis-driven
precipitation is most different from rain gauge observations, mainly because two factors: (1)
reanalysis data sets typically have very coarse spatial resolution and (2) reanalysis data sets
typically do not assimilate observations from rain gauges. Recent reanalysis products such as
CFSR and MERRA-2 start to incorporate gauge observations to correct model generate
precipitation (Reichle et al., 2017). Despite the relatively poor utility of reanalysis-based
precipitation, other reanalysis variables such as total precipitable water and 3-dimensional wind
and pressure fields are considered reliable and sometimes have been treated as surrogates of
observations. A comprehensive global-scale evaluation of 23 precipitation data sets (satellite-
and reanalysis-based) by Beck et al. (2017) reported large differences in estimation accuracy
among the data sets and highlighted the benefits of careful data merging across gauge-,
satellite- and reanalysis-based precipitation estimates.

2.3 Considerations for ARF

In this section, a total of 23 publicly available precipitation products based on gauge, radar,
satellite, and reanalysis data are described. Data metrics (including data set type, temporal and
spatial coverage, and latency) for these products are tabulated in APPENDIX A for further ARF
analysis consideration.

To reliably derive areal extreme rainfall and ARF estimates through PFA, precipitation products
with low measuring uncertainty, long records, high spatial density, large spatial coverage, and
fine temporal resolution are desired. In general, the gauge-only precipitation data sets should
have the highest (point) measurement accuracy. In addition, since the gauge-only precipitation
data sets are also the common input to most point-based PFA products (including NOAA Atlas
14), they may provide the best data consistency for ARF derivation. However, spatial
disaggregation of gauge precipitation measurements into watersheds is not a trivial task since
one needs to consider various topographic, orographic, and local adjustments (especially in
complex terrain). The processing of gauge observations (e.g., format transform, quality control,
treatment of missing values) is also more cumbersome than other approaches. As a result, the
use of gauge-only precipitation data sets likely demands more labor and resources compared
with other alternative precipitation data products.

Compared with gauge-only precipitation data sets, several gauge-driven precipitation products
are easier to use and quite popular in many hydrologic studies. Despite some differences in
methodologies, these products all consider potential topographic effects on precipitation.
However, although they are all (mostly) based on gauge observations, different data processing
and quality control procedures (that are not fully open to the public) are used in each product.
As a result, it is challenging to conduct further review and understand their inter-product
differences. Most gauge-driven precipitation products are also limited to daily temporal
resolution and hence cannot support subdaily ARF analysis.

Given the advance of monitoring technologies, both radar-driven and satellite-driven
precipitation products provide new opportunities to better understand the spatiotemporal
structures of extreme precipitation. While both types of products can better capture the
instantaneous and relative magnitude of extreme storms, they cannot provide temporally
continuous and accurate measurement of precipitation depth at a given location. As a result,
assimilation and bias-correction of raw radar-driven and satellite-driven precipitation products by
gauge observations are necessary. When both types of products are available, it is also
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recommended to first consider radar-driven rather than satellite-driven precipitation products. In
addition, given their relatively shorter periods of record, radar- and satellite-based products may
not be used to credibly estimate long-return-period extreme rainfall (e.g., it is questionable to
estimate 100-year rainfall depth from 16 years of data). The limited period of data collection is of
particular concern for the purpose of PFHA.

Among all types of precipitation products, reanalysis-driven precipitation estimates can be the
most limiting. Various studies have reported large differences between reanalysis-driven and
observed precipitation. Although the reanalysis products can provide a suite of best-available
meteorological conditions (e.g., wind, pressure, total precipitable water), they do not seem to
have the required accuracy to support PFA and ARF derivation. Therefore, use of the
reanalysis-driven precipitation in PFA is not recommended (unless all other alternative products
are unavailable).

Since no existing precipitation product can meet all desired data criteria consistently across all
of the U.S., region-specific considerations are needed. To explore and demonstrate the
sensitivity of ARF associated with precipitation products, several precipitation products are
selected for comparison in the use case studies documented in Section 4.
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3 METHODS FOR ARF ANALYSIS

This section reviews and discusses various methods that can potentially be used for ARF
analysis. Each method is evaluated by its data dependency, required assumptions, analytical
complexity, spatiotemporal scale, and whether it has been independently evaluated in other
studies. Several suitable ARF methods are then selected and compared in the use case studies
in Section 4.

3.1 Factors Affecting ARF

We start by summarizing the main factors that affect ARF in Table 3-1. These factors are
classified by storm characteristics (Section 3.1.1), geographic features (Section 3.1.2), ARF
methodology (Section 3.1.3), and source of rainfall data (Section 3.1.4). Recent review articles
(e.g., Svensson and Jones, 2010; Pietersen et al., 2015; Pavlovic et al., 2016) provide insights
into how these factors could qualitatively or quantitatively affect ARF. Discussion, along with
comments on the relevance to PFHA at NPP sites (included as indented, bulletized text
throughout Section 3.1), are provided in the remainder of this section.

Table 3-1 Summary of Factors Affecting Precipitation ARF Calculations
Storm Geographic Sources of Rainfall
Characteristics Features ,(ASR;I;il\gﬁtgcidgc;logy Data
(Section 3.1.1) (Section 3.1.2) " (Section 3.1.4)
e Storm duration o Geographic e Empirical versus | e Types of rainfall
e Storm type location analytical products
e Seasonality e Regional climate | ¢ Storm-centered e Period of record
e Return period pattern versus fixed-area | ¢ Data integration
e \Watershed e Spatial averaging | ¢ Measurement
geometry e Probabilistic uncertainty
e Watershed distributions
topography

3.1.1

Storm Characteristics

Storm characteristics are perhaps the most sensitive factors affecting ARF. Pietersen et al.
(2015) identified predominant weather types, storm durations, seasonal factors, and recurrence
intervals as primary contributors to inconsistencies across multiple ARF findings.

Storm Duration: In addition to storm area, storm duration is one of the most-commonly reported
factors affecting ARF. Many conventionally used ARFs (e.g., TP-29) reported higher ARF
values (closer to 1) at longer durations (1 day or above) and lower ARF values at shorter
durations (subdaily). However, some studies (e.g., Huff, 1995; Clark and Rakhecha, 2002;
Ramos et al., 2005) reported minimal impact of storm duration on ARF, although such studies
analyzed only limited storm durations.

e Forthe purpose of PFHA, longer-duration ARF is likely to be the focus for NPPs located
in large watersheds. Other NPPs located in smaller watersheds or in watersheds with
short lag times may require shorter-duration ARF. Depending on the specific modeling




needs (e.g., for watershed-scale flooding or for local intense precipitation), ARF with the
most suitable duration should be derived to support PFHA applications.

Storm Type: Extreme precipitation events are usually classified into larger-scale tropical and
synoptic (e.g., frontal) systems and smaller-scale convective (e.g., thunderstorm) systems that
have distinct spatial rainfall patterns. Skaugen (1997) identified spatial correlation structures for
small- and large-scale precipitation using statistical pattern recognition of daily rainfall
parameters and found that precipitation intensity for small-scale convective events decreases
more rapidly than for large-scale frontal systems (i.e., the ARF would decay more rapidly for
small-scale events). However, since storm type can be addressed only through the less
conservative storm-centered approach, it is typically not called out in most fixed-area
assessments. Storm type can instead be indirectly represented through storm area and
duration, with larger area/duration ARF primarily covering tropical/synoptic systems and smaller
area/duration ARF primarily covering convective systems. In addition, certain storm types occur
more commonly and would be more highly represented in the historical record in certain
geographic locations. For instance, convective systems are more frequent in the Midwest, while
tropical and extra-tropical storm remnants are more common in the Southeast and Northeast,
respectively. Since intense, small-scale convective events typically occur during warm seasons
(e.g., May—October), seasonal assessment can be another way to indirectly assess the effects
of storm type on ARF.

e Existing literature does not offer an effective way to quantify the effects of storm type on
ARF when a fixed-area assessment approach is used. Employing storm type
classification on historic events is a tedious and somewhat subjective process which
may not yield specific benefits for ARF derivation. Given that the effects of storm type
can be indirectly incorporated through storm area and duration and vary by region, for
the purpose of PFHA on NPP sites, assessment of effects of storm type on ARF may not
be a priority. If needed, a hybrid approach can be developed to specifically address the
effects of storm type on ARF.

Seasonality: Huff and Shipp (1969) and Allen and DeGaetano (2005b) both report smaller ARFs
associated with the warm season compared with the cool season. Svensson and Jones (2010)
reasons that this finding likely results from increased convective activities present in the warm
season. Various literature suggests that increased convection (which is associated with
concentrated, high-intensity precipitation over relatively small areas) could explain why warm
season ARFs are smaller than cool season ARFs. For regions with significant seasonal rainfall
variability, the effects of seasonality on ARF can be expected.

¢ In considering the impacts of all season precipitation events versus cool season rain-on-
snow events on an NPP site of interest, calculation of season-specific ARFs may be
needed for hydrologic applications. The (default) all season ARF is likely to be smaller
than cool season ARF and would lead to an underestimation of ARF during cool season
applications. Thus, a dedicated cool season ARF is likely needed.

Return Period: Strong evidence exists in the literature to suggest that ARF varies with return
period. Bell (1976) reported that ARFs decrease more rapidly for increasing return periods, an
observation which is also found in Stewart (1989), Skaugen (1997), Allen and DeGaetano
(2005a), and Asquith and Famiglietti (2000). However, perhaps because of data limitation, both
U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) and
United Kingdom (UK) Flood Studies Report (NERC, 1975) ARFs disregard the potential effects
due to return period, while Grebner and Roesch (1997) evaluate return period and find ARFs to
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be independent of return period in Switzerland. Using more recent radar-based rainfall product,
Pavlovic et al. (2016) show that ARF derived for the State of Oklahoma are dependent upon
return periods.

e Although return period was not represented in the conventional TP-29 ARF, its potential
influences should not be neglected and are certainly relevant to PFHA at NPP sites.
However, the main challenge arises in estimating long-return-period (e.g., greater than
100-year level) ARF estimates based on limited historic observations (i.e., decades of
data). To overcome the data limitation, a possible approach in assisting the development
of long-return-period (i.e., low frequency) ARF is through multi-ensemble simulation
using numerical weather simulation models. Modern high-performance-computing
capabilities have gradually matured enough to enable examining the areal-point extreme
precipitation relationship through computationally intensive, process-based modeling.
Until such progress has been made to improve the reliability of low-frequency extreme
precipitation depth, the ARF estimates at long return periods solely based on
observations should be treated with extreme caution.

3.1.2 Geographic Features

Geographic features such as location, regional climate pattern, watershed geometry, and
topography affect both point and areal precipitation features as well as their ARF relationship.
However, the U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959,
1960) and United Kingdom Flood Studies Report (NERC, 1975) ARFs were usually applied
across various locations without considering the potential geographical differences. This is an
area that can be improved in PFHA for NPP sites.

Geographic Location: Comparisons among ARFs in different geographic locations have
supported the concept that ARFs vary with location. For example, Omolayo (1993) found higher
1-day ARFs in the U.S. than in Australia; Asquith and Famiglietti (2000) found higher ARFs in
the eastern U.S. than in Texas; and Zehr and Myers (1984) found more rapid ARF decline in the
Southwest U.S. than the rest of the country. Bell (1976) and Stewart (1989) both found very
weak correlations between ARF and latitude, indicating that ARFs may be higher at more
northerly latitudes. In addition, the frequency and intensity of certain storm types varies across
locations. As Skaugen (1997) points out, extreme point precipitation tends to occur more
frequently inland, whereas large, synoptic-scale precipitation events tend to occur closer to the
coast.

¢ When local data are sufficient, the most defensible approach will be to derive site-
specific ARF that can best reflect the geographical influences for a site of interest. If the
preference is to use ARF from other published studies, the selection should consider if
geographical features are sufficiently similar to avoid erroneous ARF values for
applications.

Regional Climate Pattern: Since precipitation patterns are fundamentally tied to regional climate,
ARF studies have commonly reported (mostly qualitatively) the impact of regional climate on
ARFs. As mentioned earlier, the results of Omolayo (1993), Asquith and Famiglietti (2000), and
Zehr and Myers (1984) all indicate variations in ARF with geographic location; however, these
findings also indicate lower ARFs in drier climates (e.g., Australia, Texas, Southwest U.S.)
compared with wetter climates (U.S., eastern U.S.). Stewart (1989) shows that ARFs were
correlated with long-term average annual rainfall, indicating a connection between climate and
ARF.




Microclimates from urban rainfall effects may also affect ARFs. Huff (1995) evaluates ARFs for
storms occurring in urban and rural areas, finding that precipitation may decrease more slowly
in urban areas than in surrounding rural areas for a 500-km? (193-mi?) area and may decrease
more rapidly in urban areas than in surrounding rural areas for larger areas. The study,
however, was based on only 8 urban storms in Chicago and 67 rural storms in the surrounding
rural region, and Huff (1995) reported that the anomaly could result from natural variation.

e Although it is clear that regional climate pattern has a direct linkage to ARF, there has
not been an effort to include climate variables (e.g., annual precipitation) in the
numerical ARF representation. This can be worth exploring in future research efforts,
and the results should help in deriving a more generalized ARF model for regions
without sufficient data to derive site-specific ARF.

Watershed Geometry: In computing areal average rainfall (and hence ARF), the geometry of the
watershed can play a role. For example, if typical rainfall patterns (e.g., shape and movement)
vary greatly from the watershed geometry, observed areal rainfall characteristics may vary. This
effect could be most pronounced for irregular or elongated catchment shapes. However,
Veneziano and Langousis (2005) found that the effect of watershed geometry is generally small
and that highly elongated watersheds are rare.

e Although watershed shape and geometry may affect ARF, the influence should be
relatively minor and can be reasonably neglected for most NPP sites. The potential
impact may still need to be evaluated if the shape of a contributing watershed is highly
irregular or elongated.

¢ Note that in considering ARFs for a large watershed, ARFs specific to multiple sub-
watersheds may be sought for hydrologic modeling application. In such cases, it is
important to ensure that the total mass balance of rainfall estimated for the full area of
interest is reflected in the sub-watershed ARF estimates. To be more specific, the overall
watershed-wide ARF should be governed by the total area of the watershed. If the sub-
watershed ARFs are evaluated for each of the hydrologic modeling units (based on the
individual area of each sub-watershed), these sub-watershed ARFs should be further
rescaled to match the overall watershed-scale ARF. In other words, since the
aggregation of ARFs applied within multiple smaller sub-watersheds would increase the
total precipitation volume compared with application of the overall watershed ARF,
adjustments would be needed to ensure conservation of total rainfall mass.

Watershed Topography: Topography plays an important role in precipitation processes through
various orographic effects, and the frequency of particular storm patterns may change with
topography. For example, Stewart (1989) reports a relationship between ARF and long-term
average annual rainfall; however, a strong correlation between long-term average annual rainfall
and elevation also was found. Thus, topography could have contributed to the relationship found
between ARF and long-term average annual rainfall. Gauged precipitation observations are
typically sparser in high-elevation locations, partially because of lower population densities.
From a calculation standpoint, using low-density, high-elevation observations to calculate areal
precipitation could prove unrepresentative of the region being considered; however, Allen and
DeGaetano (2005b) find little variation in ARF based on gauge density.

o To ensure that the potential influence of topography is properly accounted for in ARF, it
is important to assess whether the selected precipitation product has been adjusted for
topography (e.g., PRISM and Daymet). The conventional Thiessen polygon spatial
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averaging approach does not account for the potential influence due to topography and
can lead to biased areal precipitation estimates in topographically complex regions. As
with regional climate pattern, the quantitative influence of topography on ARF can be
worth exploring in future research efforts, and the results should help in deriving a more
generalized ARF model for regions without sufficient data to derive site-specific ARF.

3.1.3 ARF Methodology

While multiple ARF methods have been developed since TP-29, there is no consensus
guidance on which newer ARF methods may be superior (or preferable). Most studies were
proposed and conducted for specific regions. Intercomparison studies such as Pietersen et al.
(2015) and Pavlovic et al. (2016) are needed for more locations and to cover more potential
methods. Further research could guide ARF model selection by providing quantifiable metrics
for comparison among alternative ARF methods. The general classification and considerations
are discussed below with further method-specific review provided in Section 4.

Empirical versus Analytical: Empirical ARF refers to the regionally smooth ARF relationship
based on a large number of samples (derived from pairs of gauges or from smaller sub-areas)
without an underlying analytical theory. Most ARFs used in practice (e.g., U.S. Weather Bureau,
1957, 1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) fall into the empirical category.
Several newer analytical approaches have been developed using various methodologies,
including correlation analysis, crossing properties, scaling relationships, and storm movement.

e To select an appropriate ARF model for application, both empirical and analytical ARF
calculation approaches should be considered and compared for the purpose of PFHA at
NPP sites. A hybrid method (i.e., fitting parameters of an analytical model by site-specific
empirical samples) offers another promising approach.

Fixed-area versus Storm-centered: The more commonly used empirical ARF approaches (e.g.,
U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) follow a fixed-
area approach in which the ARF calculation domain is geographically fixed. In contrast, some
other studies calculate ARF using a storm-centered approach in which the area analyzed
changes for each storm, while the point precipitation for ARF calculation is based on the
maximum rainfall observed. Asquith and Famiglietti (2000) point out that one challenge
associated with storm-centered ARF approaches is difficulty with handling multi-centered
storms. Omolayo (1993) report that storm-centered ARFs are incorrect for estimating areal
precipitation frequency from point precipitation observations. However, Omolayo (1993) and
Svensson and Jones (2010) acknowledge that they can be used for PMP studies since there is
no frequency associated with PMP. From a conservativeness standpoint, storm-centered ARFs
have been shown to be less conservative than fixed-area ARFs (Sivapalan and Bléschl, 1998;
Svensson and Jones 2010).

e Although storm-centered ARF relationships have been used in PMP studies (in the form
of DAD curves), those are in a different context and should not be used to derive areal
rainfall frequency estimate. Furthermore, given concerns with the appropriateness of
storm-centered ARF approaches (Omolayo, 1993) and application-related challenges
(e.g., multi-center storms), storm-centered ARF is not recommended for PFHA at NPP
sites. As highlighted in Section 1.4, this study focuses only on the fixed-area ARF
approach.



Spatial Averaging: In spatially aggregating gauge rainfall observations to estimate areal
precipitation, various methods may be used. Most commonly, simple unweighted areal
averages, Theissen polygons, and inverse distance weighting are used to compute areal
precipitation. In topographically complex regions, additional adjustments based on topography
need to be considered during spatial averaging. The case studies by Allen and DeGaetano
(2005a) found small differences in ARFs derived by using simple unweighted areal averages,
Theissen polygons, and inverse distance weighting, but also acknowledge that these simpler
interpolation methods do not account for topography. Pavlovic et al. (2016) suggest that the
spatial averaging method has a significant influence on the ARF; hence, they eventually use
radar-based data instead of gauge rainfall in their Oklahoma study.

e The potential effect of spatial averaging on ARF is likely affected by the homogeneity of
precipitation extremes within a region. As discussed previously with respect to
watershed topography, spatial averaging methods that cannot address topographical
influences (e.g., Theissen polygons) would likely result in biased areal rainfall estimates
in topographically complex regions. This issue can be further challenged by storm type
considerations and gauge density. In regions with very few gauge stations, small-scale
convective storms may not be fully captured, leading to underestimation of extreme
storms. Therefore, while simple unweighted areal averages can be adequate for spatially
homogeneous regions, various weighting methods or meteorological data assimilation
approaches should be compared and evaluated in highly heterogeneous regions.

Probabilistic Distributions: Some ARF methods rely on various types of probabilistic distributions
(e.g., Rodriguez-Iturbe and Mejia, 1974; Bacchi and Ranzi, 1996; Grebner et al., 1998; De
Michele et al., 2001). These distributions are used to model point extreme rainfall processes,
areal dependence structure, or both. For instance, Sivapalan and Bloschl (1998) assume that
point rainfall would follow an exponential distribution, whereas the areal average rainfall would
follow a gamma distribution. Overeem et al. (2009) and (2010) proposed a regional generalized
extreme value (GEV) distribution that captures both point and areal probability distribution.
Consequently, typical issues associated with frequency analysis—such as annual maximum
series (AMS) processing, fitting techniques (e.g., maximum likelihood), and goodness-of-fit
tests—would affect the derivation of ARF.

e Since the main purpose of ARF within the PFHA framework is to estimate areal PFA
estimates from point-based PFA products that have been derived through rigorous
frequency analysis, the specific requirements and consideration of probability distribution
fitting and testing should be quite familiar to the users. For a targeted NPP watershed,
one may follow the concept of conventional PFA to test and select a most suitable
probabilistic distribution to model areal extreme precipitation (i.e., a specific distribution
such as GEV is not necessary). However, while it is important to evaluate the type of
distribution to be used, it is also critical to assess whether there are sufficient statistical
samples to support parameter estimation.

3.1.4 Data

The final category relates to the rainfall data used to estimate ARF. Factors include types of
rainfall products, period of record, data integration, and measurement uncertainty.

Types of Precipitation Products: The conventional ARFs (e.g., U.S. Weather Bureau, 1957,
1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) were developed using gauge rainfall
observations; however, the increased availability of other rainfall products (e.g., radar-based
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rainfall estimates) have enabled additional accessibility for ARF calculation. Durrans et al.
(2002) report radar-based 100-year return period estimates to be 20—-35% lower than gauge-
based estimates found in TP-40 (Hershfield, 1961) and HYDRO-35 (Frederick et al., 1977).
Short radar records, heterogeneous data treatment, natural climate variability, and radar data
calibration have all been identified as potential contributors to the differences in radar-based
and gauge-based extreme rainfall estimates (Svensson and Jones, 2010). In calculating ARF,
however, these differences are generally assumed to cancel out, since point and areal
estimates are subject to the same types of biases. Durrans et al. (2002) report that while radar-
based ARFs are largely consistent with earlier gauge-based ARFs, they do not decrease with
area as rapidly as do gauge-based ARFs; however, Allen and DeGaetano (2005b) report the
opposite conclusion. Other rainfall products, such as those from satellite observations or
reanalysis, could also be evaluated but have not been commonly applied to ARF calculation.
For example, Kok et al. (2017) evaluate the feasibility of using satellite observations to compute
ARFs in Malaysia, while Fouchier et al. (2015) evaluate probabilistic ARF in France using a
reanalysis product. Pavlovic et al. (2016) state that the daily ARF curves obtained using the
radar-based Stage IV and gauge-based PRISM match each other closely.

e Given the availability of a variety of precipitation products (as discussed in Section 2),
the required effort for intensive gauge data processing is largely reduced. However, this
also raises a new concern regarding how the differences among existing precipitation
products may affect ARF. When a situation allows, both gauge and radar-based
precipitation products can be evaluated and compared to check how their differences
may affect the derived ARF values. The satellite- and reanalysis-driven precipitation
products, on the other hand, would likely involve larger uncertainty. ARF computed using
those data may be less accurate and should be applied with caution.

Period of Record: Since radar-based precipitation products are relatively new, the short period
of record represents a major limitation for computing radar-based ARFs (Durrans et al., 2002).
Satellite-based precipitation products also suffer from a relatively short period of record.
Although gauge observations benefit from a longer period of record, the periods among gauges
may be inconsistent and are more difficult to process and analyze.

e The limited period of record would prohibit reliable ARF estimation for long return
periods. If long-return-period ARF estimates are sought, the maximum number of data
should be collected for analysis.

Data Integration: Asquith and Famiglietti (2000) evaluate the aggregation of multiple overlapping
rain gauge networks near Houston, TX, and conclude that “differing precipitation-monitoring
networks cannot be indiscriminately combined.” In terms of station density, Allen and
DeGaetano (2005a) find that differences in station density and interpolation method had minimal
effect on ARF calculation in New Jersey and North Carolina. Moving forward, the integration
among different precipitation products will likely receive increasing attention, although such an
approach has yet to be used for ARF study.

¢ For data-limited regions, aggregation of multiple precipitation products will likely be one
of the few viable approaches. However, potential issues resulting from data integration
(specifically for ARF) are not clearly understood. ARF products created using integrated
data sets should be carefully reviewed.

Measurement Uncertainty: The various precipitation products exhibit different measurement
error and uncertainty, as described in Section 2. When applicable, preference should be given
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to those precipitation products with relatively smaller measurement uncertainty. Nevertheless,
since the ARF represents a depth ratio, it is usually assumed that the systematic measuring
biases can be largely canceled out. Thus, the measurement uncertainty may not be as critical to
other factors that affect ARF.

o Conventionally, hydrologic and hydraulic engineers have treated gauge observation (and
increasingly, radar-based precipitation data) as ground truth values, often without
considering its uncertainty. With the improved understanding of measurement
uncertainty and availability of multiple precipitation products, measurement uncertainty
can be quantitatively addressed in PFHA for NPP sites.

3.2 Critical Review of ARF Methods

3.2.1 Qualitative Assessment Considerations

In evaluating the suitability of an ARF method for PFHA, several key qualities should be
considered, including the following:

e Spatiotemporal Scale and Resolution—Was the method developed at a comparable
spatial scale (e.g., over 10,000 km?) to the targeted NPP watershed size and does it
offer the desired temporal resolution (e.g., 3-day or 1-hour)?

e Data Sufficiency and Dependency—Was the method developed based on a sufficiently
large and complete data set? Does the method heavily rely on the quality and quantity of
the input data, and are those data readily available, accessible, and reliable? If data
availability is an issue for a specific NPP site, does the method entail a sufficient
process-based foundation to support reasonable implementation with minimum data
input?

o Required Assumptions—Does the method require various assumptions that may have
been oversimplified or impractical?

¢ Analytical Complexity—Is the method difficult to follow or to reproduce (e.g., requires
excessive computational resources or cannot be easily applied using existing software
packages or tool sets) so that it is challenging to implement or review?

¢ Independent Evaluation—Has the method been tested and shown to perform as
expected through independent evaluation by a third party?

e Site-specific Transferability—Is the method applicable to the NPP site or watershed of
interest or is its application beyond the original study limited by geographic or
climatologic features?

These considerations are discussed and commented for various ARF methods reviewed in this
section.

3.2.2 Available ARF Methods
Some of the currently available ARF methods are summarized in this section, including

e Empirical methods (Section 3.2.2.1)
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Spatial correlation methods (Section 3.2.2.2)

Statistical crossing properties methods (Section 3.2.2.3)

Spatial and temporal scaling methods (Section 3.2.2.4)

Extreme value theory methods (Section 3.2.2.5)

A comprehensive summary of available ARF methods is also provided in Pietersen et al. (2015);
additional information on ARF methods can be found in Svensson and Jones (2010), while an
intercomparison among a few selected methods is provided in Pavlovic et al. (2016). The
reviewed methods are summarized in Table 3-2 and discussed in the sections below.

Table 3-2 Summary of Available ARF Calculation Methods

Empirical Methods

US Weather Bureau (TP-29; 1957, 1958a, 1958b, 1959, 1960)
Leclerc and Schaake (1972)

United Kingdom Approach (NERC, 1975; Bell, 1976)
Koutsoyiannis and Xanthopoulos (1999)

National Weather Service (TR-24; Myers and Zehr, 1980)
Annual-maxima-centered (Asquith and Famiglietti, 2000)
Swiss Approach (Grebner et al., 1998)

Australian Rainfall and Runoff Approach (Nathan and Weinmann, 2016)
Spatial Correlation Methods

Rodriguez-Iturbe and Mejia (1974)

Sivapalan and Bloschl (1998)

Omolayo (1989)
Statistical Crossing Properties Methods

Bacchi and Ranzi (1996)
Spatial and Temporal Scaling Methods

De Michele et al. (2001)

Veneziano and Langousis (2005)

Extreme Value Theory Methods

Durrans et al. (2002)

Allen and DeGaetano (2005a)

Lombardo et al. (2006)

Overeem et al. (2010)




3.2.2.1 Empirical Methods

Empirical ARF methods originated from TP-29 by the U.S. Weather Bureau (1957, 1958a,
1958b, 1959, 1960). The following text describes TP-29 and various empirical ARF calculation
methods that have since been developed.

U.S. Weather Bureau TP-29 Approach (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960)

The U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960)
represents the first assessment of ARFs and provides a series of curves to estimate areal
rainfall based on point rainfall. ARFs were developed for 0.5-, 1-, 3-, 6-, and 24-hour durations
for area sizes up to 1,036-km? (400-mi?; see Figure 3-1) and were assumed generalizable
regardless of geographic location or return period. The TP-29 estimates were derived by
analyzing six rain gauge networks in the U.S. with individual gauges nearly uniformly spaced
and gauge records ranging from 7 to 15 years. These networks are located between 80 and 90
degrees W longitude and 35—40 degrees N latitude.

To compute ARF, the TP-29 approach relates the mean annual maximum areal rainfall to the
mean annual maximum point rainfall for all stations and all years. The ARF is calculated for a
specific duration as follows (formula modified from Pietersen et al., 2015):

N —
NYizq Z;lzl wiPy
N n ’
Xiz12j=1 Pij

ARF = (2

where
N =number of stations within the catchment area
n =record length (years)

P,, =point rainfall of station i coincident with the annual
maximum areal rainfall in year j (mm)

P;; =annual maximum point rainfall of station i in year |
(mm)
w; =Thiessen weighting factor for station i

During year j, P;; represents the annual maximum point rainfall of station i which may occur at
different timing across the year. On the other hand, P=U refers to the single largest storm event
during year j. A Thiessen weighting factor w; is used to assign the importance of each station in
which ¥, w; = 1. Since P;; should always be greater than P=U ARF calculated by Equation (2)

has an upper bound at 1. Given the nearly uniform spatial distribution of the gauge stations, TP-
29 assumes equal weighting among all gauge observations. For nonuniform rain gauge
networks, Equation (2) can be revised to include a weighted factor for each point rainfall (see
Pietersen et al. 2015).

3-10



DIAGRAM D, AREA —DEPTH CURVES

100

24-HOUR

90 I\~

80

J-HOUR

\'\ﬁl-ﬂi__
"0\4’
&
&0 Y,

\K

s\___
A A
N\

PERCENT OF POINT RAINFALL,
FOR GIVEN AREA

30

[+] S0 100 150 200 250 300 350 400

AREA (SQUARE MILES)

Figure 3-1 TP-29 ARF Curves (Source: U.S. Weather Bureau, 1957)

Although newer methods have been developed, TP-29 remains the most commonly used ARF
calculation method applied in the U.S. Leclerc and Schaake (1972) fit the TP-29 ARF results
using the following equation:

ARF(A,D) =1 — " 4 (aD?=c4) 3)
where
A =area (km?)
D =duration (hours)
a, b, c =fitted parameters

United Kingdom Approach (NERC, 1975; Bell, 1976)

Essentially following the same approach as used in TP-29 (U.S. Weather Bureau, 1957, 1958a,
1958b, 1959, 1960), the United Kingdom Flood Studies Report (NERC, 1975) calculates ARF
using a computationally convenient assumption that ARF can be calculated as the average of
the area-to-point ratios computed from annual maximum events. The ARF is calculated as
(formula from Pietersen et al., 2015)
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ARF = %ii <%> . (4)

N =number of stations within the catchment area
n =record length (years)

P, =point rainfall for station i coincident with the annual
maximum areal rainfall in year j (mm)

where

P;j =annual maximum point rainfall of station i in year j
(mm)

Compared with TP-29, the UK ARF covered a wider range of durations (1 minute to 25 days)
and areas (1 km? to 30,000 km?).

An empirical equation representing the UK Flood Studies Report ARF curves was established
by Koutsoyiannis and Xanthopoulos (1999). The ARF curve is calculated as

(b—cln A)
ARF(A,D) =1-*——2>025, (5)
where
A =area (km?)
D =duration (hours)
a, b, c,d =fitted parameters

A graphical representation of the Koutsoyiannis and Xanthopoulos (1999) fitted model is shown
in Figure 3-2. The UK ARF curves were plotted in semi-log scale to better illustrate small and
large area ARFs simultaneously on the same figure. This plot formatting technique is different

from the linear technique used in Figure 1-1 for the TP-29 curves and results in curves which
are concave down rather than concave up.
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Figure 3-2 UK Flood Studies Report ARF Curves Based on Koutsoyiannis and
Xanthopoulos Fitted Model

While the Flood Studies Report (NERC, 1975) assumed return period had little effect on ARF
calculation, Bell (1976) reexamined the approach by fitting exponential distributions to the areal
and point annual maximum rainfall series and computing ARF for areal and point rainfall
estimates of the same return period. Circular areas of 1,000 km? (386 mi?) were evaluated with
ARFs computed for up to a 24 h duration. Given spatial variability in gauge observation
locations, Thiessen weighting was used to fit the annual maximum areal rainfall series. To better
represent the area of consideration, the point rainfall frequency curve was fitted based on the
Theisen-weighted means of annual maximum point rainfall. Fitting to an exponential distribution
using the method of maximum likelihood was performed using a partial duration series of the 20
highest events; this was performed separately for each sample area and for the point rainfall
estimates. The ARF for the same return period was then calculated for return periods of 2—-20
years. The ARF is calculated as follows:

il (wiP,
ARFr = z’iiigwmg: ! (©)
where

ARF; =areal reduction factor at return period T
T =Return period (year)

p=U =point rainfall for station i coincident with the annual
maximum areal rainfall in year j (mm)

P;j =annual maximum point rainfall of station i in year j
(mm)

w; =Theissen weighted factor for station i
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Overall, the Bell (1976) results provide reasonable agreement with the NERC (1975) results,
with specific additional findings including these:

o A slight tendency for 24-h ARFs to increase for higher latitude (less than 3% bias)

e A statistically significant tendency for ARFs to decrease for longer return periods (2-5%
bias for 24-h duration and 5-15% bias for 1-h and 2-h durations).

National Weather Service TR-24 Approach (Myers and Zehr, 1980; Zehr and Myers, 1984)

NOAA Technical Report NWS 24 (TR-24; Meyers and Zehr, 1980) represents the current U.S.
approach to ARF estimation, yet practitioners often still use TP-29 (U.S. Weather Bureau, 1957,
1958a, 1958b, 1959, 1960). TR-24 uses annual maximum rainfall across station pairs to
perform frequency analysis and was developed using data from the Chicago area but deemed
applicable nationwide. The frequency analysis is estimated following Chow (1951, 1964) and
based on a Gumbel fitting of a Fisher-Tippet type | distribution. Svensson and Jones (2010)
states that “it is questionable whether the complicated methodology [used in TR-24] is justified
as precipitation observations become more plentiful with time.” Figure 3-3 shows TR-24’s
complex calculation process. The ARF is calculated as follows (formula from Pietersen et al.,
2015):

_P(f, A8 4)

ARF = ———,
Pp(f,At,O)

(7)

where

P,=average areal rainfall for a specific frequency (f),
duration (At), and area (4) (mm)

P, =point rainfall for a specific frequency (f), duration (At),
and area (4) (mm)

The subsequent publication of NOAA Technical Memorandum NWS HYDRO-40 (Zehr and
Meyers, 1984) applied some modifications (by using a mixed statistical model) to account for
the non-dense network of gauges in Arizona and western New Mexico. Compared with the
previous national study, NWS HYDRO-40 reports larger decreases in ARFs for larger area sizes
in the southwest U.S.
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Figure 3-3  TR-24 ARF Calculation Process (Myers and Zehr, 1980)

Annual-maxima-centered Approach (Asquith and Famiglietti, 2000)

Asquith and Famiglietti (2000) follows a slightly different ARF calculation approach in which both
the areal and point components of the ARF are calculated based on annual maximum point
events; in this way, the approach focuses on specific events and represents a storm-centered
approach. Once an annual maximum point precipitation is found, a pair-wise series of
calculations are performed to find the ratio between each surrounding point precipitation and the
target annual maximum point precipitation. These ratios, shown as S;(r) in Equation (8), are
then plotted against the distance between each point pairing, and fitting is performed. The
resulting areal estimate is thus calculated as a circular area. The ARF is calculated as follows
(formula from Pietersen et al., 2015):
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e [ 2rSy(r)Ar (8)
-,

where

R =maximum radius of circular catchment or integration
limit (km); the total circular area = nR?

r =radius of concentric circle within the catchment (km)

Sr(r) =ratio between rainfall depth at a specific location,
distance r from the point of the design storm and
annual maximum rainfall

This process is conducted separately for each return period. The approach also enables simple
customized evaluations, as it does not require a fixed area and can be spatially integrated once
the paired ratios are determined. This approach requires dense gauge networks and results in
more rapidly decreasing ARFs than does TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b,
1959, 1960). As mentioned in Svensson and Jones (2010), since the approach centers around
the annual maximum point events and therefore does not consider the annual maximum areal
events, the areal estimate likely underestimates the ARF.

Swiss Approach (Grebner et al., 1998)

The Hydrological Atlas of Switzerland (Grebner et al., 1998) provides ARFs across eight
geographic zones for durations of 3-72 hours and areas of up to 5,000 km? (1,931mi?). Using
hourly precipitation gauge data from 1981 to 1993, the 26 most intensive precipitation events
per geographic zone and per duration class were summarized; thus, this approach is storm-
centered. The ARF is then statistically fit to the following formula:

%o __ 4 gse %A 9)

ARF = e

where
A =rainfall storm areas (km?)
ay, a4,a,,as, a, =fitted parameters

When A = 0, ARF should be 1. Therefore, an additional equation can be obtained:

az=1-—-2 (10)

azal !

As do other studies, Grebner et al. (1998) find ARFs for longer durations are flatter (i.e.,
decrease less rapidly) than ARFs for shorter durations. ARFs are also reported to be
independent of return period.

Australian Rainfall and Runoff Approach (Nathan and Weinmann, 2016)

The Australian Government’s Australian Rainfall and Runoff (ARR) Guidelines (Nathan and
Weinmann, 2016) provides a modified version of Bell’'s ARF calculation method. For areas with
sufficient data, hypothetical circular catchments are defined, and areal rainfall series are
developed using areal weighting (e.g., Theissen weighting). The ARF is then calculated from the
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ratio of the areal weighted rainfall quantile divided by the weighted point rainfall quantile. After
ARFs are calculated across various catchment areas, durations, and return periods for as many
locations as possible, the ARFs are averaged across the catchments and fitted to provide a
prediction model for the region of interest. Nathan and Weinmann (2016) provide detailed
application guidelines for computing ARFs for catchments up to 30,000 km? (11,583 mi?) and for
durations of up to 7 days. For application to small catchments, the authors recommend linearly
interpolating ARFs between the equation-based 10-km? ARF and an ARF of 1.0 for 0 km?.

A generalized equation for catchment areas of 10-1,000 km? and durations of 1-7 days (that
may be suitable for PFHA at many NPP sites) is formulated as

ARF(A,D,AEP) = 1 —a(AP — clog,yD)D~¢ (11)
+eA’D9(0.3 + log,o AEP)

+ h10*P (0.3 + log; o AEP)
where
A =area (km?)
D =duration (hours)
AEP =annual exceedance probability
a through i =fitted parameters

When A = 0, ARF should be 1. Therefore, an additional equation can be obtained to eliminate h
as a fitted parameter:

_ac(logyo D)™ (12)

h = )
0.3+log; o AEP

Overall, although empirically based methods require minimum analytical assumptions, they
heavily rely on the amount and quality of the underlying data. The computational challenges are
mostly for data processing and QC, but not so much for the implementation of a numerical ARF
model. Also, given the empirical nature, empirically based ARF products may not be regionally
transferable (nevertheless, many applications still use them in various distinct regions). These
various empirically based ARFs are commonly used in practice across various countries.

3.2.2.2 Spatial Correlation Methods
Various ARF calculation methods are based on spatial correlation of rainfall fields and rely on
assumptions of isotropy (i.e., spatial correlation does not vary significantly along a specific

horizontal direction/orientation) and particular statistical distributions of the rainfall process.

Original Spatial Correlation Approach (Rodriguez-lturbe and Mejia, 1974)

Rodriguez-lturbe and Mejia (1974) represents the first assessment of ARFs using spatial
correlation parameters. The ARF in this case is simplified to depend only on the correlation
coefficient of rainfall data between any two point rainfall locations chosen at random from the
study area, as follows:
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ARF = /E(p(d)) : (13)

E(p(d)) =expected correlation coefficient for the characteristic
correlation distance

where

The method uses all precipitation data rather than only considering extreme events; thus, the
randomly chosen locations are likely more evenly distributed than locations associated only with
more extreme events. The correlation distance measures the mean separation between two
point locations selected randomly from within the area of interest. A spatial correlation structure,
either an exponentially decaying function or a Bessel-type correlation structure, is assumed to fit
the rainfall data, with additional assumptions that the point precipitation is isotropic (i.e., any
location within the area of interest exhibits the same probability law) and Gaussian. Svensson
and Jones (2010) point out that this distribution is not typical of extreme, short-duration
precipitation events and that a non-Gaussian distribution will result in inexact correspondence
between the point and areal precipitation frequencies (i.e., a theoretically correct ARF will not be
represented).

Modified Spatial Correlation Approaches (Omolayo, 1989: Sivapalan and Bléschl, 1998)

Omolayo (1989) documented an ARF approach in which rainfall depths are assumed to be log-
normally distributed in space. The calculated method produces ARFs that vary directly with
spatial correlation coefficient and inversely with return period, standard deviation, and number of
gauges. The full calculation is shown in Eq. (14), while Eq. (15) shows a reduced form when a
normal distribution is assumed and Eq. (16) shows a further reduced form for when n is large
(formulas from Pietersen et al., 2015). Equation (16) provides a form resembling that derived by
Rodriguez-Iturbe and Mejia (1974); however, the Omolayo (1989) expression includes a
correlation coefficient averaged over the rain gauges rather than being expressed for a
particular separation distance. The following formulas are taken from Pietersen et al. (2015):
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LN distributed rainfall:

14+(N—-1)p (14)
ARFy =ExpKro | |—————~1

Normal distributed rainfall:

ARF, = /W o)

Normal distributed rainfall (large number of rainfall stations)
ARF; =[p (16)

where
Ky =frequency factor corresponding to return period
N =number of rainfall stations
T =return period (years)

o =standard deviation of rainfall depth in the log domain
(mm)

p =Average spatial correlation coefficient

Sivapalan and Bloschl (1998) propose a modification to the Rodriguez-Iturbe and Mejia (1974)
approach, noting that the latter approach considers mean areal average rainfall, which does not
change with the averaging area. To address the concern, Sivapalan and Bloschl (1998)
consider extreme value distributions rather than parent distributions only and assume an
exponential distribution for the point rainfall intensity. The final Sivapalan and Bloschl (1998)
ARF expression using this method is complex but is dependent on the catchment area, spatial
correlation length, duration, and return period; for very large return periods, Sivapalan and
Bloschl (1998) find the ARF to vary with catchment area and correlation structure only. While
ARFs are found to be loosely associated with duration, the authors note that the spatial
correlation length (the most critical parameter) is closely related to duration and to storm type.
The ARF is calculated as follows (formula from Pietersen et al., 2015):
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2
b(T)c(Tk?*F,(k™?) — Fl(ljc‘z) In [l” [T : 1]]

ARF [kz (/1—2) ,Ta, T] = - (17)
b(T,)c(T,) — In [ln [ﬁ]]
where
A =catchment area (km?)
b =function of duration, where b(T;) = —0.05 + 0.25T*°
¢ =function of duration, where ¢(T;) = 0.2 + 20T; %7
Fi(k™?) 1-0.17In(k™2)
F,(k™?) = 0.39 + 0.61(k~2)°8

k? =rainfall correlation structure

T =return period (years)
T, =storm duration (hours)
A =spatial correlation length (km)

Although the development of the spatial correlation method can be traced back to Rodriguez-
Iturbe and Mejia (1974), it is unclear whether this type of method has been applied in practice.
The method is, in theory, less dependent upon data (compared with the empirically based
approach). However, retuning of the parameters based on local data may still be needed.
Computational complexity will be mainly from modeling implementation and parameter fitting. It
will also require further efforts to understand the underlying theory for proper applications, which
may not be appealing to many users of ARF.

3.2.2.3 Statistical Crossing Properties Methods
Bacchi and Ranzi (1996) present a method based on the statistical crossing properties of
rainfall. Following the method, rainfall properties that cross a high threshold of rainfall intensity

are analyzed and integrated over space and time, assuming the crossings follow a Poisson
distribution. The ARF is calculated as follows:
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ARF(A,D,AEP) = F; 5(1 — AEP)/F;*(1 — AEP)
Fp(bp) = Prob[max X, (x,y,t) < bp,(x,y) € A, t € D] (18)

FA,D(bA,D) = Prob[maXXA,D(x,y, t) < bA'D,(.x,y) € A,t S D]

where
A =area under consideration (km?)
D =duration (hours)
AEP =annual exceedance probability

Fp(bp) =probability that the maximum value of the point rainfall
intensity X, does not exceed by, over the period D and
the spatial domain A

Fyp(by p) =probability that the maximum value of the areal
rainfall intensity X, p does not exceed b, , over the
period D and the spatial domain A

The authors note that the method may be useful for design storm applications in small urban
catchments for short durations. This method may not be particularly useful for PFHA at NPP
sites, since longer-duration and larger-area ARFs should be needed in most cases.

3.2.2.4 Spatial and Temporal Scaling Methods

Scaling Properties of Annual Maxima Approach (De Michele et al., 2001)

De Michele et al. (2001) present an ARF method that reflects the scaling properties of rainfall in
space in time, using the concepts of dynamic scaling and statistical self-affinity. The authors
develop a model calibrated to empirically derived ARFs from 8 years of data gathered near
Milan, Italy. The fitted results show reasonable agreement for durations of 1 and 3 h, but less
agreement for durations of 20 min and 6 h. The results also show less agreement for increasing
area sizes. This method was later tested by Pavlovic et al. (2016) in the Oklahoma study based
on radar-driven observation. The ARF is calculated as follows (formula modified from Pietersen
et al., 2015):

z1b
ARF(A,D) = [1 +o 3] ] . (19)
where
A =area (km?)
D =duration (hours)
b,v, w, z =fitted parameters

T =return period (years)

Multifractal Scaling Properties of Annual Maxima Approach (Veneziano and Langousis, 2005)

Veneziano and Langousis (2005) analyze ARF under the condition that space-time rainfall
displays approximate multifractal scale invariance and found the multifractal approach to explain
many features of empirical ARF charts. The study found that ARF varies with rainfall advection,
basin shape, and return period and that such dependencies are difficult to quantify empirically.
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Although the concepts of dynamic scaling and statistical self-affinity may not be familiar to many
H&H modelers, the final ARF form (Eq. [19]) is in fact reasonably easy to fit and use. This
spatial and temporal scaling approach also did not require the assumption of a specific type of
distribution. Further testing can be performed to understand its transferability across different
regions.

3.2.2.5 Extreme Value Theory Methods

Given the wide use of extreme value theory and GEV distribution in point rainfall frequency
analysis, many methods extend such a concept into the estimation of ARF. It can either include
a direct extension of point rainfall frequency analysis to areal rainfall observation at various
areas (e.g., radar-driven rainfall aggregated at different grid resolutions) or fitting of a single
regional GEV distribution across various areas. Many of these new methods use the radar-
driven observation (as opposed to the conventional gauge observation) to support the derivation
of ARF.

Extension of Point Rainfall Frequency Analysis (Durrans et al., 2002;: DeGaetano, 2005a)

Durrans et al. (2002) evaluated 4-km (2.49-mi) resolution radar-driven rainfall data over a
rectangular area of the central U.S. for 1-, 2-, and 4-hour durations over a 7.5-year period. They
used Gumbel distribution (a special case of GEV) for modeling the annual maximum series of
both grid cell and areally averaged precipitation depths, which is a direct extension from the
conventional point rainfall analysis approach. Durrans et al. (2002) found unexpectedly high
ARFs above 1 for some averaging areas, noted issues with the period of record available and
data processing heterogeneity, and reported that edge effects of the spatial smoothing algorithm
can affect the results and produce ARFs greater than 1. Durrans et al. (2002) also reported 100-
year estimates that were 20-35% lower than gauge-based estimates from previous literature.
The study also reports that radar-based ARFs are reasonably consistent with the TP-29 (U.S.
Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) estimates but that they do not decrease with
area as rapidly as gauge-based estimates; it also reports that the radar-based ARF curves are
similar across return periods but that ARFs decrease more rapidly for larger return periods.

A study by Allen and DeGaetano (2005a) evaluated ARFs in New Jersey and North Carolina
using 5 years’ worth of daily radar data with 2-km (1.24-mi) resolution. In contrast to findings
from Durrans et al. (2002), Allen and DeGaetano (2005a) found that radar-based ARFs decay
more rapidly for increasing area than gauge-based ARFs. For a 20,000 km? (7,722 mi?) basin,
the study found radar-based and gauge-based ARFs to differ by 11-32%. The study concluded
that higher return periods are associated with lower ARFs, warm season (April-September)
ARFs decay faster than cold season (October-March) ARFs, geographic variation in ARF is
minimal but may vary depending on different primary precipitation mechanisms, Theissen-
weighted or inverse distance weighted averaging provides improvements over unweighted
averages, and station density has little effect on ARF for the densities tested.

A study by Lombardo et al. (2006) used 1-km? (0.386-mi?) resolution radar data to estimate
rainfall for areas of up to 900 km? (347 mi?). The study found that ARFs for 200-900 km? (77.2—
347 mi?), 25-50 year return periods, and 1-2 hour durations were much lower than empirical
values from literature, ranging from 0.1-0.3 compared with 0.4-0.8 from literature. The authors
suggest that the methodology should be applied in other locations to generalize the results. The
ARF is calculated as (formula from Pietersen et al., 2015)
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_ia(Tg,T)
ARFaymy =770 )

where
A =area under consideration (km?)
i =rainfall intensity (mm/h)
T =return period (years)
T, =storm duration (hours)

Regional Generalized Extreme Value Distribution Approach (Overeem et al., 2010)

Another promising approach is to use the concept of covariance to generalize the point-based
GEV into regional GEV distribution. Using 11-year high-quality radar rainfall data, Overeem et
al. (2010) develop a generalized regional GEV distribution to estimate ARF for durations of from
15 min to 24 h and area sizes of 6 to 1700 km? for the Netherlands. This approach tries to fit a
more generalized GEV that incorporates area and duration as co-variates in the GEV
parameters. The ARFs are then calculated by using the generalized GEV. The approach is
formulated as

ARF(A,D,AEP) = P(A, D, AEP)/P(A*,D, AEP)
P(A,D,AEP) = GEV~'(1 — AEP|u(A,D),y(A,D),k(4))
u(A,D) = aD? + (c + dInD)A® (21)
Y(AD)=fInA+glnD+h
k(A) =ilnA+j
where
A =area (km?)
D =duration (hours)
AEP =annual exceedance probability
a through j =Overeem et al. (2010) parameters

A* =additional parameter representing selected minimum
area

Although parameter estimation is a bit more challenging than the conventional frequency
analysis, this approach can fit a single distribution across various durations and areas and help
derive ARF naturally. Nevertheless, note that depending on the form of the variates, the regional
GEV may not have a bound when area approaches 0. In such cases, the values of ARF will also
be affected by the selection of minimum area A* in the calculation. This factor will be tested in a
follow-up case study.

Extreme value theory methods represent a natural extension to the conventional point rainfall
frequency analysis. Therefore, the data dependency and required assumptions are generally
similar to the point rainfall frequency analysis. Computational complexity would inevitably
increase given the expanded scope at the areal dimension. The co-variate-based GEV
approach is a promising method. Nevertheless, further independent analysis and validation
should be performed to better understand its capabilities and limitations.
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3.3 Selection of Potential ARF Methods for PFHA

To help narrow down the list of available ARF methods and identify several potentially suitable
options for further evaluation in the use case study (Section 4), qualitative assessment
considerations from Section 3.2.1 are used to guide the overall selection. Each qualitative
assessment category (except for Site-specific Transferability) is assigned a 0 to 1 score; higher
scores indicate the method could be more suitable for the PFHA need. The detailed qualitative
assessment results are provided in Appendix B, Table B-1. General scoring rationales are
described as follows:

e Spatiotemporal Scale and Resolution—A score close to 1 indicates the original method
was developed for a wide range of areas and durations; a score close to 0 indicates the
method was developed only for limited areas and/or durations. In other words,
considering the varying sizes of NPP watersheds in the U.S., a method with a wider
range of spatiotemporal scales is preferred.

e Data Sufficiency and Dependency—This includes two aspects related to data.
Regarding data sufficiency, a higher score suggests the original method was developed
based on a large set of observational data set (and vice versa). Regarding data
dependency, a higher score suggests the data used for calculation are easily accessible
and generally reliable and various data sources could be used; a lower score suggests
the required data are highly limited and prevents general application.

¢ Required Assumptions—A score close to 1 indicates few assumptions are required and
the required assumptions are clear and supported by available literature; a score close
to O indicates the assumptions are overly simplified or impractical.

o Analytical Complexity—A score close to 1 indicates the method can be implemented
with little or moderate effort; a score close to 0 indicates the method is computationally
complex and/or requires significant effort to implement.

e Independent Evaluation—A score close to 1 indicates the method has been
independently evaluated with highly positive findings or has been applied widely in
practice; a score close to 0 indicates the method either has not been independently
reviewed in literature, has been found to have major flaws, or would not be practical for
case study application.

e Site-specific Transferability—This consideration is associated with a specific NPP site
and is not considered now. If a specific NPP site is being considered, a higher
transferability would suggest more similar geographical settings, local climate patterns,
and/or site-specific features; a lower transferability would suggest dissimilar background
and inappropriateness for NPP-PFHA application.

For Empirical Methods, overall, a lower score is assigned to “Data Sufficiency and Dependency’
and a higher score to “Required Assumption.” This reflects the nature of empirical methods,
which are highly data driven. Among them, the size of study area mainly affects the evaluation
of “Spatiotemporal Scale and Resolution.” While the U.S. Weather Bureau Approach receives a
lower score (given its development for limited area sizes), a higher score is given to the United
Kingdom Approach given its coverage of a large range of area and durations. It is worth noting
that the fitted formulae were developed and provided by multiple empirical methods (e.g.,
Grebner et al., 1998). For the purpose of PFHA, one may easily refit these formulae using local
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extreme precipitation information. Therefore, their “Analytical Complexity” receives a higher
score than other empirical ARF products that provide only graphical charts. Note that while both
the Asquith and Famiglietti (2000) and Grebner et al. (1998) approaches are storm-centered,
the empirical model developed for the Swiss approach can be easily used to fit precipitation
data for comparative curve fitting.

Compared with the Empirical Methods, other methods developed with supporting theories
generally received higher scores in “Data Sufficiency and Dependency” and lower scores in
“‘Required Assumptions.” Again, “Spatiotemporal Scale and Resolution” was mainly evaluated
based on the sizes of study areas and the range of durations demonstrated in the original
papers or reports. The “Analytical Complexity” of these methods varies but in general should be
more involved than the empirical methods. Further insight can be obtained from testing various
methods in the case study in Section 4.

It should be emphasized that the scores listed in Appendix B merely represent a qualitative
understanding obtained during literature review. Depending on the intended PFHA applications,
these selection criteria should be revised based on more specific needs. Overall, the following
methods are selected for further evaluation and comparison in Section 4:

e Empirical Methods

o M1: Leclerc and Schaake (1972)— fitted formula of TP-29 ARF (Eq.[ 3])
o M2: Koutsoyiannis and Xanthopoulos (1999)—fitted formula of UK ARF (Eq. [5])
o M3: Swiss Approach—fitted formula (Eq. [6]) by Grebner et al. (1998)

o Ma4: Australian Rainfall and Runoff Approach—fitted formula (Eq. [11]) by Nathan
and Weinmann (2016)

e Spatial and Temporal Scaling Method

o M5: Dynamic Scaling Model (De Michele et al., 2001), Eq. ([19])

e Extreme Value Theory Method

o M6: Regional GEV Model (Overeem et al., 2010), Eq. ([21])
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4 ARF USE CASE STUDIES

Section 4 summarizes the study domain, data, methods, and results for several use cases
designed to demonstrate ARF estimation in three selected regions and across the CONUS. A
watershed-based annual maximum precipitation searching approach is used to identify ARF
samples across different watershed sizes for further ARF model fitting. The use case study only
considers fixed-area ARF; stormed-centered ARFs are considered less conservative for the
purpose of PFHA and not evaluated in this study (as discussed in Section 1.4). Through these
use cases, a quantitative comparison of major factors affecting ARFs is provided. The overall
design of the use case study is summarized in Table 4-1.

Table 4-1 Summary of the Overall Design of the Use Case Study

Factors Considerations in the Use Case Study

e Regional assessments (with multiple precipitation products and ARF models)
o Ohio (Hydrologic Region 05)
o South Atlantic-Gulf (Hydrologic Region 03)
o Mid-Atlantic (Hydrologic Region 02)
e CONUS assessment (with one precipitation product and one ARF model)
o 18 national hydrologic regions

Study domains
(geographical
variability)

e DSI-3240: 1950-2013 NCEI hourly gauge observations
e PRISM: 1981-2017 daily gridded precipitation (Daly et al., 1994)

Precipitation o Daymet: 1980-2017 daily gridded precipitation (Thornton et al., 1997)

products i ) g o }
e Livneh: 1950-2013 daily gridded precipitation (Livneh et al., 2015)
e ST4:2002-2017 NCEP Stage-IV hourly radar-driven precipitation
Maxima . S .
searching e Watershed-based annual maximum precipitation searching approach
Area e From point location to different watersheds sizes
. e Daily and above: 1-, 2-, and 3-day
Duration . .
e Subdaily: 1-, 2-, 3-, 6-, 12-, and 18-hour (depending on data sets)
e All season: AMS searched during each calendar year
Seasonality e Warm season: AMS searched during May through October
e Cool season: AMS searched during November through April
Frequency e Average annual maximum precipitation (around 2-year return level)

(return period) e 10- and 100-year precipitation (fitted by GEV)

e M1: Leclerc and Schaake (1972) TP-29 Model

e M2: Koutsoyiannis and Xanthopoulos (1999) United Kingdom-Natural
Environment Research Council (UK-NERC) Model

ARF models e M3: Hydrological Atlas of Switzerland Model (Grebner et al., 1998)
e M4: Australian ARR Model (Nathan and Weinmann, 2016)
e M5: De Michele (2001) Dynamic Scaling Model
e MB6: Regional GEV Model (Overeem et al., 2010)

o NSE: Nash-Sutcliffe model efficiency coefficient

Fitting statistics
¢ RMSE: Root mean square error
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The authors note that additional return periods beyond 100 years were also analyzed, but that
due to the poor fitting model performance, the results of such analyses are not summarized in
this report. The issue largely related to the limited observed data record length available from

the precipitation products leading to high uncertainty in the model results.

In addition, given the significant effort required to separate historical precipitation data based on
storm type, the effect of storm type is not explicitly explored in this use case study. Instead,
seasonality is used as an appropriate proxy parameter to demonstrate the potential influence of
storm type on ARF.

4.1 Study Domain

The use cases include (1) regional assessments of ARFs for three selected hydrologic regions
focusing on different precipitation products, and fitting models to demonstrate major factors
affecting ARFs and (2) a CONUS assessment of ARFs across all hydrologic regions, focusing
on the use of one precipitation product and one fitting model to demonstrate geographic
variation in ARFs.

411 Regional Assessments

Three hydrologic regions (also known as the 2-digit hydrologic units, HUC02) are assessed to
develop regional ARF models across different areas, durations, and return periods using
different precipitation products and fitting models. These three HUCO02 regions include Ohio
(Region 05), Mid-Atlantic (Region 02), and South Atlantic-Gulf (Region 03). Maps of each region
with its finer hydrologic units (i.e., HUC04 subregions, HUCO06 basins, and HUCO08 subbasins)
are provided in Figure 4-1, Figure 4-2, and Figure 4-3, respectively. These regions were
selected in this use case study because they represent regions with differing precipitation
drivers for which data availability is good, and because of their relevance to existing and
proposed NPPs.
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Figure 4-1

Ohio (Region 05) 4-digit, 6-digit, and 8-digit Hydrologic Units (From Top

Left to Bottom)
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Figure 4-2  Mid-Atlantic (Region 02) 4-digit, 6-digit, and 8-digit Hydrologic Units (From
Top Left to Bottom)
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Figure 4-3
(From Top Left to Bottom)

4.1.2 CONUS Assessment

The CONUS assessment uses one precipitation product (PRISM) and one fitting model (M5: De
Michele Dynamic Scaling Model) to assess the geographic variations in ARFs across different
areas, durations, and return periods. Each HUCO2 region in the CONUS (Figure 4-4) is
evaluated independently using the PRISM data and M5 fitting model. The decision to use
PRISM data was largely motivated by its used in NOAA Atlas 14, complete CONUS coverage,
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and good spatial resolution. The decision to use the M5 fitting model was largely motivated by
its simplicity and generally good performance.
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Upper Mississippi 04
o7 "

Mid Atlantic
02

Great Basin

Bhio
05
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Figure 4-4 HUCO02 Hydrologic Regions in CONUS

4.2 Selected Precipitation Products

The data collected for use case application are from five different precipitation products,
including hourly gauge observations (DSI-3240), daily PRISM, daily Daymet, daily Livheh, and
hourly NCEP Stage-1V (ST4). A summary of the five selected precipitation products is provided
in Table 4-2. DSI-3240 is selected for its high temporal resolution (hourly) and because such
gauge observation is generally considered to be “ground truth” for observed precipitation. The
radar-driven ST4 is selected because of its high temporal resolution (hourly) and because of
radar’s unique strength in detecting spatial storm structures that cannot be measured by sparse
rain gauges. The three gridded daily precipitation data products (PRISM, Daymet, Livheh) are
selected for their wide applications in various hydrologic studies and because they can be easily
analyzed using a similar approach. It is worth mentioning that the daily PRISM data also
incorporate radar information in their post-2002 gridded precipitation. Given the influence of
radar information, ST4 and post-2002 PRISM generally show more spatial variability than
Daymet and Livheh, especially near boundaries of radar data availability.

Among the gridded precipitation products, Daymet has the finest spatial resolution (1 km),
followed by PRISM and ST4 (4 km), and then Livneh (6 km). Despite Livneh’s coarser spatial
resolution, it has the longest record (64 years from 1950-2013), followed by Daymet (38 years
from 1980-2017), PRISM (37 years from 1981-2017), and ST4 (16 years from 2002-2017).
Since both spatial resolution and data length are important features affecting the accuracy of
ARF, trade-offs exist in selecting the most appropriate precipitation product to support ARF
calculation.



Additional treatment (e.g., spatial interpolation or Theisen polygon approach) is needed to
process the DSI-3240 gauge observations for ARF calculation. Since DSI-3240 data collection,
processing, quality control, and analysis require more effort, hourly gauge observations are
analyzed only in the Ohio (Region 05) regional assessment. As an example, over 300 NCEI
DSI-3240 stations with more than 30 years of record in Ohio (with density ~1400 km? per
station) are shown in Figure 4-5. The PRISM, Daymet, Livheh, and NCEP ST4 data are used
across the three regional assessments. The CONUS assessment uses only PRISM data.

Further discussion regarding the background and features of each selected data set can be
found in Section 2.2.
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Figure 4-5 NCEI Hourly Rainfall Stations with 30+ Years of Record in Ohio (Region 05)

4.3 ARF Assessment

The calculation of ARF involves three main steps: (1) AMS searching, (2) sample ARF
calculation, and (3) ARF model fitting. Conceptually speaking, ARF derivation involves initial
steps which are similar to the procedures of point-based frequency analysis, but extends the
AMS searching and probabilistic density function (PDF) fitting from each point location to the
watershed scale. The use case demonstrations follow a data-driven approach in which some
level of quality assurance and control are performed, although the raw data are largely
unaltered. This section provides a summary of calculation procedures employed in this case
study.

4.3.1 AMS Ildentification

Similar to the procedures of PFA, the first step of ARF calculation is to identify maximum
precipitation from either the AMS or partial duration series (PDS) approaches (i.e., PDS is an
alternative approach that identifies all maximum precipitation samples above a defined
threshold). To be consistent with the prominent literature (including NOAA Atlas 14), the AMS
approach is used in this use case study. Also, for consistency (with NOAA Atlas 14), AMS are
searched for each calendar year (January to December) instead of each water year (October to



September). While some AMS may be different when searched by water year, the overall
influence on the final PFA estimates should be very limited.

Since the main purpose of ARF is to suggest how the values of extreme precipitation change
across different spatial scales, the AMS identification should be conducted at various
aggregated watershed or catchment scales. Using Figure 4-6 as an example, consider
R4ria(d, g) as a daily gridded precipitation field in which d represents a certain day and

g represents a certain grid location. Given that extreme precipitation (e.g., mesoscale
convective systems, tropical storms, hurricanes) may occur at different scales with large spatial
variability, the annual maximum precipitation across all grids may occur at different times. With
regard to understanding the frequency of extreme precipitation for a given catchment in this
field, the average of grid-based AMS will likely overestimate the magnitude of extreme
precipitation. Therefore, one should use the catchment shape as a spatial filter to first spatially
aggregate daily precipitation from R4 (d, g) 10 Rareq(d), and then identify AMS from this
aggregated precipitation time series for analysis.

Rgrid(d,g) RArea(d)

Spaual pattern
for whole event

Rainfall Depth
or mean rainfall
intensity

Northing : Easting or
or Latitude Longitude 4
Temporal Pattern
for catchment

Figure 4-6  Spatial and Temporal Aggregation Diagram Used for Gridded Precipitation
Products Source: ©Commonwealth of Australia (Geoscience Australia) 2019.
This Product is Released Under the Creative Commons Attribution 4.0
International Licence. http://creativecommons.org/licenses/by/4.0/legalcode

Following this concept, and taking the calendar year 2002 as an example, in searching the
maximum 1-day precipitation at each PRISM grid within the entire Ohio River Basin, it is found
that the timing of grid-based AMS spreads across different seasons and belongs to different
events (Figure 4-7a). On the other hand, in searching the basin-wide maximum average
precipitation of the entire Ohio River Basin, the 1-day AMS event is found to be on September
27, 2002. In comparing grid-based and basin-wide AMS (Figure 4-7b and Figure 4-7¢), it can be
seen that while nearly half of the grid-based AMS are the same as basin-wide AMS, grid-based
AMS reports high precipitation across the watershed. Therefore, using grid-based AMS to
conduct point-based PFA will lead to higher extreme rainfall estimates than using areal PFA
based on basin-wide AMS. It is intuitive that, when the catchment size increases, the AMS
identified for the watershed will also become smaller compared with the average of AMS across
all corresponding grids. This concept forms the basis of ARF as a reduction factor needed to
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convert point-based precipitation frequency estimates to areal estimates for watershed
application.

(a) Year-2002 PRISM Gridded (b) Year-2002 PRISM Gridded (c) Sep 27, 2002 PRISM Precip. (mm/day)
Annual Max. Precipitation Day Annual Max. Precip. Depth (mm/day) Annual Max. Event for the Ohio River Basin
88W 86W 84W 82W 80W 78W 88W 86W 84W 82W 80W 78W 88W 86W 84W 82W 80W 78W

42N 42N 42N

40N 40N 40N

38N 38NE 38N

36N} 36N} 36N}

Feb 15 May 15 Aug 15 Nov 15 0 50 100 150 0 50 100 150

Figure 4-7 Example of AMS Searing in the Ohio River Basin

Although previous areal AMS approaches have used different spatial aggregation techniques to
analyze areal extreme precipitation (e.g., square n-by-n grids or circular windows), the U.S
hydrologic unit code (HUC) watersheds are used as a spatial filter in this study. The HUC is a
hierarchical labeling structure to organize U.S. watersheds across different sizes (e.g., Figure
4-1, Figure 4-2, and Figure 4-3). For each hydrologic HUCO2 region, spatially aggregated AMS
are searched for each HUCO04 subregion, HUCO06 basin, and HUCO08 subbasin. The overall AMS
at the HUCO2 region scale is not searched since in many cases HUCO?2 itself is not a single
watershed (e.g., Region 02 Mid-Atlantic and Region 03 South Atlantic-Gulf). Since these HUC
units are defined by watershed boundaries, this HUC-based spatial aggregation approach lends
itself well to hydrologic applications, including the PFHA for NPPs.

In testing this HUC-based AMS identification approach, a larger data gap for large-area samples
was observed (i.e., there are fewer HUC04s than HUCO06s and HUCO08s). To address this issue
and increase the AMS samples to cover a wider range of watershed sizes, HUC accumulation
technique is applied in this use case study for developing accumulated HUC units (HUCac). The
concept of HUCac is illustrated in Figure 4-8. In the left panel of Figure 4-8, all HUCO8s in the
Ohio Region are shown with their upstream and downstream subbasin connectivity. Using this
HUCO08 connectivity information, taking HUC08 05090203 as an example (marked in blue in the
right panel of Figure 4-8), all upstream contributing HUCO08s to 05090203 are labeled and hence
identify the entire upstream contributing area as HUCac (to HUC08 05090203). Following this
approach, HUCac is identified for each of the HUCO08s based on their upstream connectivity,
and then search AMS for each HUCac. When an HUCac is identical to an existing HUC04,
HUCO06, and HUCOS, it is neglected, to avoid double-sampling.
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Figure 4-8 = Example Spatial Aggregation of Ohio Region HUC08s to form a HUCac
Upstream of HUC 08 05090203

Following the HUCac implementation, the final Ohio (Region 05) AMS sampling consists of the
following HUC-based spatial units, where the largest HUCac in this case is the entire Ohio River
Basin (420,000 km?):

120 HUCO08: 290 — 840 km?

21 HUCO06: 4,400 — 54,000 km?
7 HUCO4: 15,000 — 85,000 km?
46 HUCac: 4,600 — 420,000 km?

To effectively summarize gridded precipitation (PRISM, Daymet, Livheh, and ST4), a conversion
table is established indicating what grid points should be included in a specific HUC unit. This
conversion table is then used to spatially average all hourly and daily gridded precipitation into
different HUC-based precipitation for AMS identification.

Since the DSI-3240 hourly gauge precipitation requires great analysis effort, it is only analyzed
in Region 05 Ohio to assess the sensitivity of using different data. After performing processing
and QC of all DSI-3240 hourly gauge data in and surrounding Region 05 Ohio, bilinear
interpolation is used to spatially interpolate DSI-3240 values at each PRISM grid location. The
HUC-based AMS identification approach is then followed to determine the AMS of DSI-3240.
While the gauge data are ground-based and should ideally include topographic adjustments
(e.g., elevation lapse rate), these considerations are not accounted for during spatial
interpolation. This is acceptable in most of Region 05 Ohio, given its relatively flatter terrain, but
it can present a greater impact for certain watersheds that contain significant topographic
variation. In such cases, proper topography-informed adjustment approaches (such as those
used in PRISM, Daymet, and Livneh) should be used to analyze spatial DSI-3240 precipitation.

Overall, AMS are searched for different

e Data
o 1950-2013 DSI-3240 hourly gauge precipitation, spatially interpolated to the ~4 km
resolution PRISM grids (Ohio only)
o 1981-2017 PRISM daily gridded precipitation, ~4 km resolution
o 1980-2017 Daymet daily gridded precipitation, 1 km resolution
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o 2002-2017 ST4 hourly gridded precipitation, 4 km resolution
o 1950-2013 Livneh daily gridded precipitation, ~6 km resolution
e Durations
o Daily and above: 1-, 2-, and 3-day
o Subdaily for ST4 and DSI-3240 (Ohio only): 1-, 2-, 3-, 6-, 12-, and 18-hour
e Spatial units
o Grid (Pyrigq): annual at each grid
o Areal (Pyyc): annual at each HUC08, HUCO06, HUCO04, and HUCac
e Seasons
o All seasons (January through December)
o Warm season (May through October)
o Cool season (January through April and November through December)
o Geographic coverage
o Regional for Region 05 Ohio, Region 03 South Atlantic-Gulf, and Region 02 Mid-
Atlantic
o National for each HUCO02 hydrologic region (PRISM only)

These calculated AMS values form the basis of the ARF calculation in this use case study.
4.3.2 Sample ARF Calculation

After AMS has been comprehensively searched for all HUCs and each grid point, the next step
is to calculate the sample ARF at each HUC. These sample ARFs would represent the best-
available, watershed-specific ARF estimates at each HUC (assuming that there are sufficient
historic observations to support the ARF estimate). The ARF samples across all HUCs can then
be grouped and jointly fitted into an ARF model for more generalized representation (discussed
in the following section).

Let Py,iq (v, g) represent the annual maximum precipitation at year y and grid g, and Pyy¢(y)
represent the annual maximum precipitation at year y for a particular HUC. Considering all grids
in the HUC unit, the first type of sample ARF, ARF,, 4, can be defined as

ARE,,, = -HuCavg (22)
g Pgrid,avg
N.
2,2, Pruc®)
PHUC,aug == 1Ny ’ (23)

N N
p 2,032 Poria(v.9)
grid,avg — NyNg

: (24)

where N,, is the total number of years, and N, is the total number of grid points in the HUC unit.
Following the definition, ARF,,,, presents the ratio of average areal AMS to the average grid-
based AMS. Approximately speaking, ARF,,, defined in this fashion would have a return period

around 2 years. In rare cases, when calculating individual ARF values, it is possible to compute
an ARF above 1.00. In these cases, the authors set the value to an upper ARF limit of 1.00.

Another type of sample ARF involves the selection of a suitable PDF and PDF fitting so that

frequency (return period) can be introduced into the calculation of ARF. Assuming that the GEV
distribution is a suitable PDF in this case, the T-year ARFr,- can be defined as
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ARFp,, = _Prveryr , (25)

Pgrid,Tyr,avg
_ 1
Pyycryr = GEV ! (1 T |.uHUC:yHUC; KHUC) ' (26)

1
Zggl GEV—1(1 - ;|Mg; Vg; Kg)
Pyria,ryravg = N, ) (27)

where GEV 1 represents the inverse of GEV; uyyc, Yuuc, Knuc represent the GEV parameters
estimated at the selected HUC unit using the HUC-based AMS; and u, vy, k4 represent the
GEV parameters estimated at each grid point using the grid-based AMS. Clearly, other suitable
PDFs may also be used to replace GEV to provide proper frequency estimates.

In this use case study, the maximum likelihood approach is used to estimate the GEV
parameters. After parameter fitting, the Kolmogorov—Smirnov (KS) test is used to examine the
goodness-of-fit at a 5% significance level. If a specific case fails to pass the KS test, the data
point is disregarded for further ARF model fitting. Overall, the average ARF from Eg. (21) and
the 10- and 100-year estimates from Eq. (24) are used in the following section.

Note that frequency can also be introduced into ARF from other approaches (e.g., Overeem et
al., 2010). However, regardless of which approach is used, the limited data record would likely
be the biggest hurdle to estimating long-return-level precipitation and ARF. Even with around 60
years of long-term records (from Livneh and DSI-3240 data sets), there may not be sufficient
data to support the estimate of precipitation and ARF with return periods greater than 100 years,
as the uncertainty associated with extrapolating return period estimates well beyond the record
length continues to rise. In addition, nonstationarity in a changing environment would add further
complication to the frequency analysis. These more involved issues are noted but not examined
in this use case study.

4.3.3 ARF Model Fitting

The final step of the regional ARF model development is to fit all ARF samples in a hydrologic
region with a generalized ARF model. Six ARF models are used in this study. They include the
Leclerc and Schaake TP-29 Model (M1), the Koutsoyiannis and Xanthopoulos UK-NERC Model
(M2), the Hydrological Atlas of Switzerland Model (M3), the Australian ARR Model (M4), the De
Michele Dynamic Scaling Model (M5), and the Regional GEV Model (M6). These ARF models
are discussed in Section 3.

M1: Leclerc and Schaake TP-29 Model

The Leclerc and Schaake (1972) Model is an empirical equation representing the U.S. Weather
Bureau TP-29 ARF curves (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960). The M1
model (Eq. [3] in Section 3.2.2.1) is a function of area A (km? or mi?) and duration D (hours) with
three parameters a, b, and c.

To fit the three M1 parameters, the root mean square error (RMSE) between ARF samples and

ARF model is minimized using the nonlinear programming solver (from Matlab). The
performance of fitting is further evaluated by the Nash—Sutcliffe efficiency (NSE; McCuen et al.,
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2006) coefficient*. Given that M1 is not a function of return period, fitting is performed separately
for each frequency level of interest (i.e., average AMS, 10-, and 100-year). An example of a
typical M1 fitting is provided in Figure 4-9 (in semi-log scale to better illustrate ARF across a

wide range of areas).

100 ARF of Mean PRISM AMS - HUC 05 (semi-log scale), M1 Fitting
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Figure 4-9 Example of M1 ARF Model Fitting

M2: Koutsoyiannis and Xanthopoulos UK-NERC Model

An empirical equation representing the UK Flood Studies Report ARF curves was established
by Koutsoyiannis and Xanthopoulos (1999). The M2 model (Eqg. [5] in Section 3.2.2.1) is a
function of area A (km? or mi?) and duration D (hours) with four parameters a, b, ¢, and d.

The fitting procedure for the four M2 parameters is similar to that for M1. Also, given that M2 is
not a function of return period, fitting is performed separately for each frequency level of interest
(i.e., average AMS, 10-, and 100-year). An example of a typical M2 fitting is provided in Figure

4-10.

ARF of Mean PRISM AMS - HUC 05 (semi-log scale), M2 Fitting
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Figure 4-10 Example of M2 ARF Model Fitting

+ NSE coefficient values range from -~ to 1 with an efficiency of 0 indicating the model predictions are as accurate as
the mean of the observed data. Higher values correspond to better model predictions, and values of 0.5 or above

are generally considered to indicate good performance.
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M3: Hydrological Atlas of Switzerland Model

The Hydrological Atlas of Switzerland (Grebner et al., 1998) provides a generalized equation for
ARFs across different geographic zones of Switzerland. The M3 model (Eg. [9] in Section
3.2.2.1) is a function of area A (km? or mi?) with five parameters ao, ai, az, as, and as. Since ARF
should be 1 when A = 0, an additional equation (Eq. [10] in Section 3.2.2.1) can be used to
reduce one parameter.

We use a similar procedure to fit the remaining four M3 parameters. Unlike M1 and M2, M3 ARF
is only a function of area (not duration). Therefore, fitting is performed separately for each
duration and frequency level. An example of a typical M3 fitting is provided in Figure 4-11.
Because of the reduced sample size, the fitting of M3 is generally more challenging than fitting
of M1 and M2 and may be more sensitive to outliers in the fitting samples, especially at the
higher return period level.

100
80 R
<
[T
@ 60 .
<
3-day, NSE = 0.927
40| 2day,NSE=00934 |
1-day, NSE = 0.937
s L N | L . MRS | . N M S N L M |
10 102 10° 10* 10°

HUC Area (miz)

Figure 4-11 Example of M3 ARF Model Fitting

M4: Australian ARR Model

The ARR Guidelines (Nathan and Weinmann, 2016) provide a series of equations for ARF
calculation, including a generalizable equation used for catchment areas of 10—1,000 km?, and
durations of 1-7 days. This equation is deemed reasonable to use for demonstration purpose.
The M4 model (Eq. [11] in Section 3.2.2.1) is a function of area A (km? or mi?), duration D
(hours), and annual exceedance probability (AEP) with nine parameters (a through i). Similar to
M3, an additional equation (Eg. [12] in Section 3.2.2.1) can be used to reduce one parameter for
fitting.

We use a similar procedure to fit the remaining eight M4 parameters. Unlike M1 through M3
models, M4 ARF is a function of area, duration, and return period. Therefore, fitting is needed
only once across all frequency levels. While fitting eight model parameters through nonlinear
programming solver is more challenging, the M4 model has an extra return period dimension
and can be more flexible for application. Nevertheless, note that unless credible higher-return-
level ARF samples (e.g., over 200 years) are included as a part of fitting, the fitted M4 model
should not be used to derive ARF at a long-return-period level. An example of a typical M4
fitting is provided in Figure 4-12.
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Figure 4-12 Example of M4 ARF Model Fitting

M5: De Michele Dynamic Scaling Model

The previous four methods employed are empirical methods. The fifth model, De Michele (De
Michele et al., 2001), is selected because of its good underlying theory based on spatial and
temporal rainfall scaling. The M5 model (Eg. [19] in Section 3.2.2.4) is a function of area A (km?
or mi?) and duration D (hours) with four parameters b, v, w, and z.

A similar fitting procedure is used to estimate the four M5 parameters. Similar to M1 and M2, the
M5 model is also a function of area and duration. Therefore, fitting is performed separately at
each frequency level (i.e., average AMS, 10-, and 100-year). An example of a typical M5 fitting
is provided in Figure 4-13.
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Figure 4-13 Example of M5 ARF Model Fitting
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M6: Regional GEV Model

A final ARF model based on the regional GEV distribution approach is developed by Overeem
et al. (2010). Instead of using HUC-specific ARF samples for parameter estimation and regional
ARF model development (such as M1 though M5), this approach tries to fit a more generalized
GEV that incorporates area and duration as co-variates in the GEV parameters. The ARFs are
then calculated using the generalized GEV. The M6 model (Eqg. [21] in Section 3.2.2.5) is a
function of area A (km? or mi2), duration D (hours), and AEP with ten parameters (a through j).

Note that, theoretically, A* in the denominator should be 0 (so that ARF represents the ratio of
precipitation with area A divided by precipitation with area 0). However, the current formulation,
P(A*, D, AEP), will approach infinity when A approaches 0. ° Therefore, A* needs to be treated as
an additional parameter for estimation. Parameters a through j are estimated by the maximum
likelihood approach through the same Matlab-based nonlinear programming solver used for
M1-M5. Parameter A* is estimated by minimizing the RMSE between the ARF samples and the
ARF model. Similar to the case of M4 model, fitting is needed only once across all frequency
levels. An example of a typical M6 fitting is provided in Figure 4-14.
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Figure 4-14 Example of M6 ARF Model Fitting

These six ARF models are fitted with different data sources in the three regions. In the national
assessment, only the M5 De Michele model is fitted across all hydrologic regions for inter-
regional comparison.

It is important to note that when comparing the fitted model results that the complexity of each
model can impact model performance and uncertainty. Table 3-1 summarizes the fitting model
complexity for M1 through M6. The six selected models each include area as an independent
variable, with some including duration and AEP. They also include varying numbers of fitted
parameters, ranging from 4 to 10. Since the case studies provide fitted model results as a
function of area, duration, and AEP, the number of models fitted for each case study region is a

s Overeem (2010) documents its approach as applicable for areas of 6 km? and larger.
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function of the number of fitted parameters and the number of independent variable selections
for which a unigue model is needed.®

It is noted that while a model form that includes area, duration, and AEP as independent
variables (e.g., M4 and M6) helps reduce the number of models needed, it may yield lower
performance since the variation in multiple variables is being explained by a single model. On
the other hand, a model form that only includes area (e.g., M3) may yield good performance but
requires a larger number of models to assess impacts of duration and AEP on ARF.

In addition, a model which introduces many fitted parameters can increase performance but
may not be theoretically justifiable given its complexity and uncertainty.

Table 4-3 Summary of fitting model complexity

';/'Ittmg Model Form Atse # Models Fitted
odel Parameters
M1 | ARF =f(A,D) (3 fitted parameters) x (# AEPs)
M2 | ARF =f(A,D) (4 fitted parameters) x (# AEPs)
M3 | ARF = f(A) (4 fitted parameters) x (# durations) x (# AEPs)
M4 | ARF = f(A,D,AEP) (8 fitted parameters)
(4 fitted parameters) x (# AEPs)

M5 | ARF = f(A,D)
M6 | ARF = f(A,D,AEP) (10 fitted parameters)

=
ol/P|o|r~|~w

4.4 Use Case Results

Using the data and methods described in Sections 4.2 and 4.3, respectively, the regional
assessment results are summarized for Ohio (Section 4.4.1), Mid-Atlantic (Section 4.4.2), and
South-Atlantic-Gulf (Section 4.4.3) regions and for the entire CONUS (Section 4.4.4).

4.41 Ohio (Region 05)

As described in Section 4.1.1, the regional assessment includes ARF estimates across the Ohio
region using different fitting models, data sources, return periods, durations, and seasons.
Results demonstrating the effects of these different features are provided below. Detailed
results for Region 05 Ohio are provided in APPENDIX C.

4.4.1.1 Effect of Fitting Model

Figure 4-15 provides a comparison of six ARF models (M1-M6) and their NSE fitting statistics in
Ohio at 1-day duration and 10-year return period using PRISM. The figure shows variability in
the individual, site-specific HUC unit ARFs (black dots) with fitted model curves (colored lines)
which generally follow the traditional ARF curve shape. The M1 and M6 models reveal different
shapes with worse overall performance. The M2—M5 models produce similar curves, with the
full-HUCO02 ARF (~422,000 km?; 163,000 mi?) only varying from 0.40 to 0.47. The summary of
NSE across different ARF models and frequency levels are further shown in Table 4-4. As noted

¢ For example, for M1, a unique model is needed for each AEP analyzed since the ARF model is a function of area
and duration, but not AEP.
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in the Section 4 introduction below Table 4-1, additional return periods beyond 100 years were
also analyzed. However, due to the poor fitting model performance, the results of such analyses
are not summarized in this report. The issue largely related to the limited observed data record
length available from the precipitation products leading to high uncertainty in the model results.

These findings indicate the importance of model selection and establish M1 and M6 as less-
preferred options. For M1, the Leclerc and Schaake (1972) equation was originally developed
for the TP-29 results, which only provided ARF values or areas less than 1,036 km? (400 mi?).
When applying M1 for larger area ARF (e.g., 422,000 km? [163,000 mi?] in Figure 4-15), it
appears that M1 would reach a lower bound and cannot provide suitable fitting at the right tail.
For M6, the ARF curve would reduce to a linear line at the semi-log scale (lower panel in Figure
4-15) and cannot provide good fit compared to other models.
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Figure 4-15 Comparison of 1-day, 10-year Ohio ARF Fitting Using PRISM Precipitation

Across Different ARF Models Black dots represent calculated ARFs across
HUC units; solid curves represent fitted models for M1-M6. Top and bottom
panels include the same information in linear (top) and semi-log (bottom) scale.
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Table 4-4 Comparison of 1-day Ohio ARF Fitting Using PRISM Precipitation Across
Different ARF Models Cell coloration indicates relative performance, with
darker red colors indicating worse performance and white colors indicating better
performance.

NSE
M1 | M2 | M3 | M4 | M5 | M6

Average AMS (~ 2-year) | 0.72 | 0.93 | 0.94 | 0.93 | 0.94 | 0.84

Return Period

10-year 0.70 1 0.91 | 091 {091 |0.91 | 0.83

100-year 049 | 0.67 | 0.69 | 0.68 | 0.68 | 0.62

4.4.1.2 Effect of Data Source

Figure 4-16 provides a comparison of five data sources (PRISM, Daymet, ST4, Livneh, and
DSI3240) and their NSE fitting statistics in Ohio at 1-day duration and 10-year return period.
The figure shows variability in the individual, site-specific HUC unit ARFs (colored dots) with
fitted model curves (colored lines) which follow the traditional ARF curve shape. The ST4 case
reveals overall lower ARFs than other cases, with worse overall performance. The models using
Daymet, Livheh, PRISM, and DSI-3240 data produce more similar results. The summary of
NSE across different precipitation products and frequency levels are further shown in Table 4-5.
To better illustrate the effects of data source (and data length) on ARF fitting performance,
analysis is extended to 200-, 500-, and 1000-year in Table 4-5.

While the effect of data source is generally smaller than the effect of model, the differences
across data sources are still large enough to be non-negligible. In particular, with the increase of
return period, the radar-driven ST4 data can lead to significantly different ARFs than when using
the gauge-only (DSI-3240) or gauge-driven (Daymet, Livneh, PRISM) precipitation products.
This may be a result of shorter ST4 data record length. While ST4 is in hourly time step and can
better represent spatial variability (through radar), it only has 16 years of record as compared to
37—64 years of record for other precipitation products.
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Figure 4-16 Comparison of 1-day, 10-year Ohio M5 ARF Fitted by Different Precipitation

Products Colored dots represent calculated ARFs across HUC units; solid
curves represent fitted M5 models using different precipitation products. Top and
bottom panels include the same information in linear (top) and semi-log (bottom)
scale.

Table 4-5 Comparison of 1-day Ohio M5 ARF Fitting across Different Data Sources
Cell coloration indicates relative performance, with darker red colors indicating
worse performance and white colors indicating better performance.

NSE
Return Period PRISM Daymet ST4 Livneh DSI3240
(1981-2017) | (1980-2017) | (2002-2017) | (1950-2013) | (1950-2013)

Average AMS (~ 2-year) 0.94 0.95 0.91 0.92 0.95
10-year 0.91 0.93 0.80 0.91 0.93
100-year 0.68 0.74 0.09 0.80 0.85
200-year 0.60 0.66 -0.01 0.73 0.79
500-year 0.58 0.56 0.02 0.63 0.74
1000-year 0.56 0.48 0.08 0.62 0.67
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4.4.1.3 Effect of Return Period

Figure 4-17 provides the 1-day Ohio M5-fitted ARF and associated performance statistics using
PRISM precipitation product across different return periods. Additional fitting statistics across
different return periods for other ARF models and precipitation products are shown in Table 4-4,
and Table 4-5. The figure shows variability in the individual, site-specific HUC unit ARFs
(colored dots) with fitted model curves (colored lines) which follow the traditional ARF curve
shape. As expected, the 100-year curve reveals overall lower ARFs than the lower return
periods, with worse overall performance.

The model performance results demonstrate the importance of data record length. With the
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance.

While one can numerically calculate higher return period ARFs (e.g., 1000-year) through fitted
GEV distribution for regional ARF model development, it was noticed that the spread across
HUCs will become too large to reliably estimate ARF. Considering the limited observation
record, it is likely that one may not credibly estimate long return period precipitation and ARF
only through data driven approach. Further research that can utilize numerical weather model to
assist the development of higher return ARFs should be considered.
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Figure 4-17 Comparison of PRISM-based 1-day Ohio M5 ARF across Different
Frequency Levels Colored dots represent calculated ARFs across HUC units;
solid curves represent fitted M5 models using PRISM.

4.4.1.4 Effect of Duration

Figure 4-18 provides the 10-year Ohio M5-fitted ARF and associated performance statistics
using PRISM precipitation product across different durations. The figure shows variability in the
individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines)
which follow the traditional ARF curve shape. As expected, the 3-day curve reveals overall
higher ARFs than the shorter durations, which matches the trend found in literature. The
performance also slightly decreases for longer duration. The summary of NSE across different
durations and frequency levels are further shown in Table 4-6.
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Figure 4-18 Comparison of 10-year Ohio M5 ARF Using PRISM Precipitation across
Different Durations Colored dots represent calculated ARFs across HUC units;

solid curves represent fitted M5 models using PRISM.

Table 4-6 Comparison of Ohio M5 ARF fitting Using PRISM Precipitation across
Different Durations Cell coloration indicates relative performance, with darker
red colors indicating worse performance and white colors indicating better

performance.

NSE
1-day | 2-day | 3-day

Average AMS (~2-year) | 0.94 | 093 | 0.93
10-year 091 | 0.89 | 091

Return Period

100-year 068 | 0.70 | 0.80

To gain further insights into the variability of subdaily ARF, in Figure 4-19 provides a
comparison of 10-year Ohio M5-fitted ARF using DSI-3240 hourly precipitation across 9
different durations. DSI-3240 is selected for this comparison given its hourly resolution and
relatively long record. Similar to the findings reported by NERC (1975), the subdaily ARF
decreases with shortening durations. Such analysis can also be performed using the radar-
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driven hourly ST4 precipitation, but the limited ST4 period of record would lead to more noisy
results especially at higher return levels (not shown).
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Figure 4-19 Comparison of 10-year Ohio M5 ARF Using DSI-3240 Precipitation across
Different Durations Colored dots represent calculated ARFs across HUC units;
solid curves represent fitted M5 models using DSI-3240.

When performing fitting of M5 model, a further complication was encountered when trying to fit a
single set of ARF parameters across both longer (1-, 2-, and 3-day) and shorter (less than 1-
day) duration ARF samples. With additional subdaily samples, the performance of fitting would
start to decline (not shown). Therefore, instead of fitting a single set of ARF parameters across
all durations, in Figure 4-19 each duration is fit separately. The implication is that, for the
derivation of a generalized ARF model, one may need to develop separate models for long,
medium and short durations.

To provide a consistent comparison in this use case study, 1-, 2-, and 3-day ARF results are
analyzed and presented since they are the common durations across different precipitation
products. As discussed in Section 2.3, there are fewer subdaily resolution precipitation products
to support subdaily ARF analysis. DSI-3240 has longer period of records and the highest point
measurement accuracy, but it involves a much larger effort for data processing and spatial
interpolation (in particular, considering the effects of topographic during interpolation). The novel
radar-driven ST4 precipitation product can better capture the storm structures and has already
been in grid format (i.e., easier to process). However, ST4 only has 16 years of records that
significantly limits it applicability for higher return period ARF. Moving forward, alternative data
approach such as merging of different precipitation products or incorporation of numerically
simulated extreme events can be potential areas for further exploration.

4.4.1.5 Effect of Seasonality
Figure 4-20 provides the 1-day 10-year Ohio M5-fitted ARF and associated performance

statistics using PRISM precipitation product across different seasons. The figure shows
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variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves
(colored lines) which follow the traditional ARF curve shape. The summary of NSE across
different seasons and frequency levels are further shown in Table 4-7.
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Figure 4-20 Comparison of 1-day, 10-year Ohio M5 ARF Using PRISM Precipitation
across Different Seasons Colored dots represent calculated ARFs across HUC
units; solid curves represent fitted M5 models using different precipitation
products. Top and bottom panels include the same information in linear (top) and
semi-log (bottom) scale.

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is
searched during May through October every year). The results suggest that the warm season
ARF is close to all season ARF, while cool season ARF has a much higher value. The
closeness between warm and all seasons indicates that the annual extreme precipitation in
Ohio mainly occurs during warm season. The differences in warm and cool seasons ARF can
be explained by their respective controlling extreme precipitation processes. In the Ohio Region,
the major extreme precipitation events during warm season are meso-scale convective storms
that area generally smaller in size and have larger spatial variability (leading to smaller ARF).
On the other hand, the major extreme precipitation events in the Ohio Region during cool
season are mostly large-scale frontal systems with relatively smaller spatial variability (as
compared to warm season convective storms) that leads to larger ARF. For H&H applications
such as simulation of rain-on-snow during cool season, the results suggest that a specific cool
season ARF will be needed. The fitting performance of ARF across different seasons is largely
similar with cool season having slightly smaller NSE.
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Table 4-7 Comparison of 1-day Ohio M5 ARF Fitting Using PRISM Precipitation
across Different Seasons Cell coloration indicates relative performance, with
darker red colors indicating worse performance and white colors indicating better

performance.
NSE
Return Period All seasons | WWarm season Cool season
(May-Oct) | (Jan—Apr & Nov-Dec)
Average AMS (~ 2-year) 0.94 0.95 0.94
10-year 0.91 0.92 0.92
100-year 0.68 0.67 0.61

4.4.2 Mid-Atlantic (Region 02)

As described in Section 4.1.1, the regional assessment includes ARF estimates across the Mid-
Atlantic region using different fitting models, data sources, return periods, durations, and
seasons. Results demonstrating the effects of these different features are provided below.
Detailed demonstration results for the Mid-Atlantic Region are provided in APPENDIX D.

4.4.2.1 Effect of Fitting Model

Figure 4-21 provides a comparison of six ARF models (M1-M6) and their NSE fitting statistics in
Mid-Atlantic at 1-day duration and 10-year return period using PRISM. The figure shows
variability in the individual, site-specific HUC unit ARFs (black dots) with fitted model curves
(colored lines) which generally follow the traditional ARF curve shape. The summary of NSE
across different ARF models and frequency levels is further shown in Table 4-8.

The models reveal similarities, yet larger differences, compared to the better performance found
in the Ohio region. Comparatively speaking, the M1 and M6 models (identified as less-preferred
in Ohio) are also some of the worst performers in the Mid-Atlantic Region, while M4 also
produces relatively low performance results, though no model produces particularly good
results. These findings again indicate the importance of model selection. The relatively poorer
performance in Region 02 (than Region 05) can be explained by the wider variability in the
calculated HUC unit ARFs. Unlike the single watershed in Region 05 Ohio, Region 02 Mid-
Atlantic contains multiple independent HUCO04-level watersheds and hence involves larger
variabilities. Additionally, the terrain in Region 02 is more complicated than Region 05, and
hence involves more types of extreme precipitation processes (e.g., from coastal hurricanes to
topographically enhanced precipitation). Despite the weaker fitting, the overall findings across
different models are still consistent with general understanding and expectation.
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Figure 4-21 Comparison of 1-day, 10-year Mid-Atlantic ARF Fitting Using PRISM
Precipitation across Different ARF Models Black dots represent calculated
ARFs across HUC units; solid curves represent fitted models for M1-M6. Top
and bottom panels include the same information in linear (top) and semi-log
(bottom) scale.
Table 4-8 Comparison of 1-day Mid-Atlantic ARF Fitting Using PRISM Precipitation

across Different ARF Models Cell coloration indicates relative performance,
with darker red colors indicating worse performance and white colors indicating
better performance.

. NSE
Return Period
M1 | M2 | M3 | M4 | M5 | M6
Average AMS (~ 2-year) | 0.72 | 0.80 | 0.81 | 0.80 | 0.80 | 0.65
10-year 0.61 | 0.67 | 0.67 | 0.65 | 0.67 | 0.52
100-year 0.12 | 0.15 [ 0.15 | 0.11 | 0.15 | 0.02

4.4.2.2 Effect of Data Source

Figure 4-22 provides a comparison of four data sources (PRISM, Daymet, ST4, and Livneh) and
their NSE fitting statistics in Mid-Atlantic at 1-day duration and 10-year return period (unlike
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Ohio, the Mid-Atlantic region did not include DSI-3240). The figure shows variability in the
individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines)
which follow the traditional ARF curve shape. The summary of NSE across different
precipitation products and frequency levels are further shown in Table 4-9. To better illustrate
the effects of data source (and data length) on ARF fitting performance, the analysis is extended
to 200-, 500-, and 1000-year in Table 4-9.

As with the Ohio region results, the ST4 case reveals overall lower ARFs than other cases, with
worse overall fitting performance. The models using Daymet, Livneh, PRISM, and DSI-3240
data produce similar but not identical results. This again highlights the need to examine different
datasets, as well as the importance of data record length (especially for higher return period
estimates). As with the findings noted in Section 4.4.2.1, the overall performance in the Mid-
Atlantic region is relatively poorer, owing to variability in calculated HUC unit ARFs. ST4 again
provides worse fitting for long return period ARF, due to its relatively shorter period of records.
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Figure 4-22 Comparison of 1-day, 10-year Mid-Atlantic M5 ARF Fitted by Different
Precipitation Products Colored dots represent calculated ARFs across HUC
units; solid curves represent fitted M5 models using different precipitation
products. Top and bottom panels include the same information in linear (top) and
semi-log (bottom) scale.
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Table 4-9 Comparison of 1-day Mid-Atlantic M5 ARF Fitting across Different Data
Sources Cell coloration indicates relative performance, with darker red colors
indicating worse performance and white colors indicating better performance.

Return Period PRISM Daymet g?f Livneh DSI3240

(1981-2017) | (1980-2017) | (2002-2017) | (1950-2013) | (1950-2013)
Average AMS (~ 2-year) 0.80 0.71 0.74 0.83 -
10-year 0.67 0.63 0.45 0.75 -
100-year 0.15 0.17 0.29 0.28 -
200-year 0.12 0.11 0.27 0.18 -
500-year 0.12 0.09 0.25 0.17 --
1000-year 0.09 0.08 0.24 0.14 --

4.4.2.3 Effect of Return Period

Figure 4-23 provides the 1-day Mid-Atlantic M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different return periods. Additional fitting
statistics across different return periods for other ARF models and precipitation products are
shown in Table 4-8, and Table 4-9. The figure shows variability in the individual, site-specific
HUC unit ARFs (colored dots) with fitted model curves (colored lines) which follow the traditional
ARF curve shape. As expected, the 100-year curve reveals overall lower ARFs than the lower
return periods, with worse overall performance. Notably, this worse performance also results in
a different shape to the curve, resulting in the 100-year curve and ARF values being higher than
the other two curves at high area size. This is a result of poor statistical modeling given limited
data.

The model performance results demonstrate the importance of data record length. With the
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance. The challenges
associated the higher return period ARF are similar to the observations in Region 05 Ohio.
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Figure 4-23 Comparison of PRISM-based 1-day Mid-Atlantic M5 ARF across Different
Frequency Levels Colored dots represent calculated ARFs across HUC units;
solid curves represent fitted M5 models using PRISM.

4.4.2.4 Effect of Duration

Figure 4-24 provides the 10-year Mid-Atlantic M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different durations. The figure shows
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves
(colored lines) which follow the traditional ARF curve shape. As expected, the 3-day curve
reveals overall higher ARFs than the shorter durations, which matches the trend found in
literature. Unlike in the Ohio region, the Mid-Atlantic performance slightly increases for longer
duration, but the increase is fairly small that may not be meaningful. However, the fitting
performance in the Mid-Atlantic is lower than in the Ohio region. The summary of NSE across
different durations and frequency levels are further shown in Table 4-10.
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Figure 4-24 Comparison of 10-year Mid-Atlantic M5 ARF Using PRISM Precipitation
across Different Durations Colored dots represent calculated ARFs across
HUC units; solid curves represent fitted M5 models using PRISM.

Table 4-10 Comparison of Mid-Atlantic M5 ARF Fitting Using PRISM Precipitation
across Different Durations Cell coloration indicates relative performance, with
darker red colors indicating worse performance and white colors indicating better
performance.

NSE
1-day | 2-day | 3-day

Average AMS (~2-year) | 0.80 | 0.78 | 0.79
10-year 0.67 | 0.62 | 0.69

100-year 015 | 017 | 0.22

Return Period

4.4.2.5 Effect of Seasonality

Figure 4-25 provides the 1-day 10-year Mid-Atlantic M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different seasons. The figure shows
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves
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(colored lines) which follow the traditional ARF curve shape. The summary of NSE across
different seasons and frequency levels are further shown in Table 4-11.

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is
searched during May through October every year). Similar to Ohio, the warm season ARF is
close to all season ARF. Cool season ARF is higher than both warm and all seasons, but in
Mid-Atlantic the difference is relatively smaller. The closeness between warm and all seasons
indicates that the annual extreme precipitation in Mid-Atlantic also mostly occurs during warm
season. The difference between warm and cool season ARF can also be explained by the
different controlling extreme precipitation processes (e.g., meso-scale versus frontal systems)
across seasons. For H&H applications such as simulation of rain-on-snow during cool season,
the results also suggest that a specific cool season ARF will be needed in the Mid-Atlantic
region. Regarding fitting performance, both warm and all seasons provide worse fitting,
particularly at higher return period.
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Figure 4-25 Comparison of 1-day, 10-year Mid-Atlantic M5 ARF Using PRISM
Precipitation across Different Seasons Colored dots represent calculated
ARFs across HUC units; solid curves represent fitted M5 models using different
precipitation products. Top and bottom panels include the same information in
linear (top) and semi-log (bottom) scale.
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Table 4-11  Comparison of 1-day Mid-Atlantic M5 ARF Fitting Using PRISM
Precipitation across Different Seasons Cell coloration indicates relative
performance, with darker red colors indicating worse performance and white
colors indicating better performance.

NSE
Return Period All seasons | Warm seasson Cool season
(May-Oct) | (Jan—Apr & Nov-Dec)
Average AMS (~ 2-year) 0.80 0.81 0.80
10-year 0.67 0.67 0.78
100-year 0.15 0.12 0.53

4.4.3 South Atlantic-Gulf (Region 03)

As described in Section 4.1.1, the regional assessment includes ARF estimates across the
South Atlantic-Gulf region using different fitting models, data sources, return periods, durations,
and seasons. Results demonstrating the effects of these different features are provided below.
Detailed demonstration results for the South Atlantic-Gulf Region are provided in APPENDIX E.

4.4.3.1 Effect of Fitting Model

Figure 4-26 provides a comparison of six ARF models (M1-M6) and their NSE fitting statistics in
South Atlantic-Gulf at 1-day duration and 10-year return period using PRISM. The figure shows
variability in the individual, site-specific HUC unit ARFs (black dots) with fitted model curves
(colored lines) which generally follow the traditional ARF curve shape. The summary of NSE
across different ARF models and frequency levels is further shown in Table 4-12.

The overall model performance in the South Atlantic-Gulf region is better than the Mid-Atlantic
region but worse than the Ohio region. Comparatively speaking, the M1 and M6 models
(identified as less-preferred in other two regions) are also some of the worst performers in the
South Atlantic-Gulf Region. These findings again indicate the variabilities introduced by different
models. The relatively weaker performance in Region 03 (than Region 05) can be explained by
the wider variability in the calculated HUC unit ARFs. South Atlantic-Gulf is the 2" largest
hydrologic region in the U.S. that contains 18 independent HUCO04-level watersheds along the
southeastern coastline. Given its wider geographical coverage, it involves multiple types of
extreme precipitation processes (e.g., from coastal hurricanes to topographic enhance
precipitation near the Smokies) that lead to larger sample ARF variability. Nevertheless, the
overall findings across different models are consistent with general understanding and
expectation.
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Figure 4-26 Comparison of 1-day, 10-year South Atlantic-Gulf ARF Fitting Using PRISM
Precipitation across Different ARF Models Black dots represent calculated
ARFs across HUC units; solid curves represent fitted models for M1-M6. Top
and bottom panels include the same information in linear (top) and semi-log
(bottom) scale.

Table 4-12 Comparison of 1-day South Atlantic-Gulf ARF Fitting Using PRISM
Precipitation across Different ARF Models Cell coloration indicates relative
performance, with darker red colors indicating worse performance and white
colors indicating better performance.

NSE
M1 | M2 | M3 | M4 | M5 | M6

Average AMS (~ 2-year) | 0.64 | 0.72 | 0.72 | 0.71 | 0.72 | 0.65

Return Period

10-year 064 (071072 |0.71 | 0.72 | 0.56

100-year 035|043 |044 | 043|044 | 0.24

4.4.3.2 Effect of Data Source

Figure 4-27 provides a comparison of four data sources (PRISM, Daymet, ST4, and Livneh) and
their NSE fitting statistics in South Atlantic-Gulf at 1-day duration and 10-year return period
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(unlike Ohio, the Mid-Atlantic region did not include DSI-3240). The figure shows variability in
the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines)
which follow the traditional ARF curve shape. The summary of NSE across different
precipitation products and frequency levels are further shown in Table 4-13. To better illustrate
the effects of data source (and data length) on ARF fitting performance, the analysis is extended
to 200-, 500-, and 1000-year in Table 4-13.

As with the Ohio and Mid-Atlantic results, the ST4 case reveals overall lower ARFs than other
cases, with worse overall fitting performance. The models using Daymet, Livheh, PRISM, and
DSI-3240 data produce similar but not identical results. This again highlights the need to
examine different datasets, as well as the importance of data record length (especially for higher
return period estimates). As with the findings noted in Section 4.4.2.1, the overall performance
in the South Atlantic-Gulf region is relatively poorer, owing to the large spatial coverage. ST4
also provides worse fitting for long return period ARF, due to its relatively shorter period of
records.

ARF of 10-year AMS - HUC 03, M5 fitting
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Figure 4-27 Comparison of 1-day, 10-year South Atlantic-Gulf M5 ARF Fitted by
Different Precipitation Products Colored dots represent calculated ARFs
across HUC units; solid curves represent fitted M5 models using different
precipitation products. Top and bottom panels include the same information in
linear (top) and semi-log (bottom) scale.

4-37



Table 4-13 Comparison of 1-day South Atlantic-Gulf M5 ARF Fitting across Different
Data Sources Cell coloration indicates relative performance, with darker red
colors indicating worse performance and white colors indicating better

performance.
NSE
Return Period PRISM Daymet ST4 Livneh DSI3240
(1981-2017) | (1980-2017) | (2002-2017) | (1950-2013) | (1950-2013)

Average AMS (~ 2-year) 0.72 0.83 0.72 0.80 -
10-year 0.72 0.81 0.60 0.80 -
100-year 0.44 0.48 0.19 0.62 -
200-year 0.36 0.42 0.15 0.57 -
500-year 0.31 0.38 0.15 0.50 -
1000-year 0.27 0.34 0.14 0.44 -

4.4.3.3 Effect of Return Period

Figure 4-28 provides the 1-day South Atlantic-Gulf M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different return periods. Additional fitting
statistics across different return periods for other ARF models and precipitation products are
shown in Table 4-12, and Table 4-13. The figure shows variability in the individual, site-specific
HUC unit ARFs (colored dots) with fitted model curves (colored lines) which follow the traditional
ARF curve shape. As expected, the 100-year curve reveals overall lower ARFs than the lower
return periods, with worse overall performance.

The model performance results demonstrate the importance of data record length. With the
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance. The challenges
associated the higher return period ARF are similar to the observations in the Ohio and Mid-
Atlantic regions.
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Figure 4-28 Comparison of PRISM-based 1-day South Atlantic-Gulf M5 ARF across
Different Frequency Levels Colored dots represent calculated ARFs across
HUC units; solid curves represent fitted M5 models using PRISM.

4.4.3.4 Effect of Duration

Figure 4-29 provides the 10-year South Atlantic-Gulf M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different durations. The figure shows
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves
(colored lines) which follow the traditional ARF curve shape. As expected, the 3-day curve
reveals overall higher ARFs than the shorter durations, which matches the trend found in
literature. Unlike in the Ohio region, the South Atlantic-Gulf performance slightly increases for
longer duration. The summary of NSE across different durations and frequency levels are
further shown in Table 4-14.
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Figure 4-29 Comparison of 10-year South Atlantic-Gulf M5 ARF Using PRISM
Precipitation across Different Durations Colored dots represent calculated
ARFs across HUC units; solid curves represent fitted M5 models using PRISM.

Table 4-14 Comparison of South Atlantic-Gulf M5 ARF Fitting Using PRISM
Precipitation across Different Durations Cell coloration indicates relative
performance, with darker red colors indicating worse performance and white

colors indicating better performance.

NSE
1-day | 2-day | 3-day

Average AMS (~2-year) | 0.72 | 0.75 | 0.75
10-year 0.72 | 0.75 | 0.73

Return Period

100-year 044 | 046 | 047

4.4.3.5 Effect of Seasonality

Figure 4-30 provides the 1-day 10-year Mid-Atlantic M5-fitted ARF and associated performance
statistics using PRISM precipitation product across different seasons. The figure shows
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variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves
(colored lines) which follow the traditional ARF curve shape. The summary of NSE across
different seasons and frequency levels are further shown in Table 4-15.

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is
searched during May through October every year). Similar to Ohio and Mid-Atlantic, the warm
season ARF is close to all season ARF, and the cool season ARF is higher than others. The
closeness between warm and all seasons indicates that the annual extreme precipitation in
South Atlantic-Gulf also mostly occurs during warm season. However, the difference between
warm and cool season ARF is the smallest among all regions, suggesting that the effect of
seasonality is less significant in the South Atlantic-Gulf region. This finding is consistent with the
regional climate pattern of South Atlantic-Gulf that it's the warmest among all three regions.
Given that there is much less annual snowpack in this region, and the smaller differences
between warm and cool season ARF, there may not be a significant need to develop season-
specific ARF for H&H applications.
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Figure 4-30 Comparison of 1-day, 10-year South Atlantic-Gulf M5 ARF Using PRISM
Precipitation across Different Seasons Colored dots represent calculated
ARFs across HUC units; solid curves represent fitted M5 models using different
precipitation products. Top and bottom panels include the same information in
linear (top) and semi-log (bottom) scale.
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Table 4-15 Comparison of 1-day South Atlantic-Gulf M5 ARF Fitting Using PRISM
Precipitation across Different Seasons Cell coloration indicates relative
performance, with darker red colors indicating worse performance and white
colors indicating better performance.

NSE
Return Period All seasons Warm season Cool season
(May-Oct) | (Jan—Apr & Nov-Dec)
Average AMS (~ 2-year) 0.72 0.75 0.67
10-year 0.72 0.68 0.64
100-year 0.44 0.35 0.41

4.4.4 CONUS Reconnaissance-level Assessment

As described in Section 4.1.2, the national assessment includes ARF estimates at the HUC02
level across all CONUS regions. These estimates are produced using daily PRISM precipitation
data and the M5 De Michele fitting model. Additional demonstration results for the national
assessment are provided in APPENDIX F.

4.4.4.1 Effect of Geographic Location

Figure 4-31 shows example ARF curves across the 18 CONUS HUCO2 regions for 1-day
duration and 100-year return period. The maximum area plotted for each region represents the
largest HUC unit analyzed in the region. The results demonstrate that while ARF values are
somewhat consistent for small area sizes (e.g., ARFs are within about 6% for areas below 259
km? [100 mi?]), the variation increases for larger areas. For example, at 25,900 km? (10,000
mi?), the fitted ARFs range from approximately 0.85 in the New England region (Region 01) to
0.56 in the Souris-Red-Rainy (Region 09) and Texas-Gulf (Region 12) regions. This regional
variation is illustrated in Figure 4-32, which generally shows that lower ARFs are found in the
central U.S., with higher ARFs found in the eastern and western U.S. Several factors could
contribute to this pattern, but it is expected that regional climate, coastal proximity,
topographical influences, and frequency of certain storm types/intensities could influence AMS
values across regions and influence ARF estimates. It is worth noting that the results in Figure
4-31 and Figure 4-32 are for a 100-year return period based on 37 years of data; thus, the fitting
performance (summarized in Table 4-16 and Table 4-17) is relatively poorer than for lower
return periods.
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Areal Reduction Factors by HUC02 using PRISM-daily data and M5 fitting
1-day Duration | 100-year Return Period

e ] —01 (New England)
%\ 02 (Mid Atlantic)
0.9 \ 03 (South Atlantic-Gulf)
—04 (Great Lakes)
\k r~ 01 (New England) ——05 (Ohio)
= 0.8 —06 (Tennessee)
-.g \\ 02 (Mid Atlantic) 07 (Upper Mississippi)
< \ 18 (Califomia) —08 (Lower Mississippi)
wo7 N\ 04 (Creal Lakes) — 09 (Souris-Red-Rainy)
pe= ‘ 16 (Great Basin) —10 (Missouri)
e \ O (e etoesre) 11 (Arkansas-White-Red)
N (South Atlantic-G{if)
© 0.6 o —12 (Texas-Gulf)
> \ 08 (Lower Mississippi) 13 (Rio G d
8 \ 1 15 (Lower Colorgdo) —13 (Rio Grande)
’ —14 (Upper Colorado)
D_: 0.5 17 (Pacific Ngriwest) 4 5 (Lower Colorado)
S X\\ 14 (Upper Colaradd) —1? gSre?f? BNasm )
= | . acific Northwes
<04 (8 (Sotnts Reg Rainy} ™ mree — 18 (California)
(Ohio) |
12 (Texas-Guif) &) \
03 13 (Rio|Grande)
) 11| (Arkansas-White-Red) ~,
07 |(Upper Mississippi)—r—"r )
0.2 e O Missown) |||
7 7 7 7z Vs,
© % ‘Q, (%} (#)

Area (square miles)

Figure 4-31 CONUS ARF Assessment for 1-day Duration and 100-year Return Period
Using PRISM-Daily Data and M5 Model Fitting

Areal Reduction Factor by HUCO02 Duration: 1 day

Area: 10,000 square miles

using PRISM-daily data and M5 fitting Return Period: 100 years
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Figure 4-32 CONUS ARF Assessment for 1-day Duration, 10,000-mi? Area, and 100-year
Return Period Using PRISM-daily Data and M5 Model Fitting
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4.4.4.2 Effect of Return Period

Figure 4-33 shows various maps of HUC02-level ARFs for 1-day duration. The maps are
organized to demonstrate the influence of increasing return period when moving from left to
right. Example plots are provided for different area sizes of 1,036 km? (400 mi?; top row), 5,180
km? (2,000 mi?; middle row), and 25,900 km? (10,000 mi?; bottom row). The results show a
tendency for ARFs to decrease with increasing return period and to decrease with increasing
area. The same general geographic pattern as discussed in Section 4.4.4.1 is also seen in
these maps. Table 4-16 summarizes the regional NSE model performance statistics associated
with the 1-day fittings. As expected, the performance degrades for higher return periods. The
NSE values also vary regionally, with the lowest values found in regions 01 (New England), 02
(Mid-Atlantic), 04 (Great Lakes), and 16 (Great Basin). While regions 01, 02, and 04 are all in
the northeastern U.S., a clear explanation for the performance results is not apparent and would
require further investigation.

Areal Reduction Factors by HUC02 using PRISM-daily data and M5 fitting
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Figure 4-33 Map of CONUS 1-day ARFs Using PRISM-daily Data and M5 Model Fitting
across Different Areas and Return Periods
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Table 4-16 Comparison of 1-day CONUS Regional M5 ARF Fitting Using PRISM
Precipitation across Different Return Periods Cell coloration indicates
relative performance, with darker red colors indicating worse performance and
white colors indicating better performance. Note that the region numbers
correspond to Figure 4-4, with lower numbers generally in the eastern U.S. and
higher numbers generally in the western U.S.

NSE

Return Period Region Number

01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18
Avg. AMS | 0.68 [ 0.80 [ 0.72 | 0.69 | 0.94 | 0.91 | 0.93 | 0.87 | 0.88 | 0.85 | 0.87 | 0.88 | 0.92 | 0.83 | 0.84 | 0.81 | 0.85 | 0.72
GEV 10-yr ] 0.66 | 0.67 | 0.72 | 0.58 | 0.91 | 0.89 | 0.90 | 0.83 | 0.85 | 0.78 | 0.81 | 0.89 | 0.90 | 0.81 | 0.79 | 0.77 | 0.84 | 0.74
GEV 100-yr |0.20 | 0.15 | 0.44 | 0.31 | 0.68 | 0.46 | 0.72 | 0.59 | 0.73 | 0.57 | 0.59 | 0.70 | 0.72 | 0.65 | 0.51 | 0.37 | 0.70 | 0.63

4.4.4.3 Effect of Area and Duration

Figure 4-34 shows various maps of HUC02-level ARFs for 100-year return period. The maps
are organized to demonstrate the influence of increasing duration when moving from left to right.
Example plots are provided for different area sizes of 1,036 km? (400 mi?; top row), 5,180 km?
(2,000 mi?; middle row), and 25,900 km? (10,000 mi?; bottom row). The results show a tendency
for ARFs to increase with increasing duration and to decrease with increasing area. The same
general geographic pattern as discussed in Section 4.4.4.1 is also seen in these maps. Table
4-17 summarizes the regional NSE model performance statistics associated with the 100-year
fittings. The results demonstrate relatively low differences in performance across different
durations. However, the NSE values vary regionally, with the lowest values found in regions 01
(New England), 02 (Mid-Atlantic), 03 (South Atlantic-Gulf), 04 (Great Lakes), and 16 (Great
Basin). While regions 01, 02, and 04 are all in the northeastern U.S., a clear explanation for the
performance results is not apparent and would require further investigation. The relatively
poorer performance in certain regions can be explained by the wider variability in the calculated
HUC unit ARFs. One possible explanation for the wider variability is that these regions contain
multiple independent HUCO04-level watersheds and hence involves larger variabilities. It is also
possible that terrain effects could play a role and that a mixture of more extreme precipitation
processes (e.g., from coastal hurricanes to topographically enhanced precipitation).
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Areal Reduction Factors by HUCO02 using PRISM-daily data and M5 fitting
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Figure 4-34 Map of CONUS 100-year ARFs Using PRISM-daily Data and M5 Model
Fitting across Different Durations and Areas

Table 4-17 Comparison of 100-year CONUS Regional M5 ARF Fitting Using PRISM
Precipitation across Different Durations Cell coloration indicates relative
performance, with darker red colors indicating worse performance and white
colors indicating better performance. Note that the region numbers correspond to
Figure 4-4, with lower numbers generally in the eastern U.S. and higher numbers
generally in the western U.S.

NSE

Duration Region Number
01|02 |03 |04 | 05|06 |07 |08 |0 |10 |11 |12 |13 |14 |15 | 16 | 17 | 18

1-day |0.20 [0.15|0.44 | 0.31 | 0.68 | 0.46 | 0.72 | 0.59 | 0.73 | 0.57 | 0.59 | 0.70 | 0.72 | 0.65 | 0.51 | 0.37 | 0.70 | 0.63
2-day ]0.29|0.17 | 0.46 |0.33 | 0.70 | 0.67 | 0.70 | 0.58 [ 0.70 | 0.59 | 0.62 | 0.71 | 0.73 | 0.62 | 0.57 | 0.50 | 0.65 | 0.60
3-day |0.28 |0.22 | 0.47 | 0.30 | 0.80 | 0.65 | 0.72 | 0.67 | 0.72 | 0.60 | 0.68 | 0.66 | 0.78 | 0.70 | 0.50 | 0.43 | 0.58 | 0.58
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5 SUMMARY

To support PFHA of NPPs, probabilistic estimates of extreme rainfall depth across various
watershed sizes are required. Nevertheless, most existing PFA products (such as NOAA Atlas
14) provide frequency estimates of “point” precipitation that can only be representative for a
small domain and are not appropriate for large-scale watershed modeling applications. The ARF
examined in this study, which is the ratio of areal extreme rainfall depth to point-based extreme
rainfall depth, is one commonly-used approach to derive areal extreme rainfall estimates from
conventional point-based PFA products. The use of ARF is hecessary because high
spatiotemporal resolution precipitation observations with long period of records, which are
needed for accurate areal rainfall frequency estimation, are generally lacking and do not allow
for an appropriate characterization of the associated spatial rainfall patterns.

However, compared to modern PFA products, the progress of ARF development in the U.S. is
relatively slow, and the TP-29 ARFs published in the 1950s are still used in practice. To improve
understanding of ARF variabilities across different precipitation products, ARF models, return
periods, geographical locations, and seasons, this study conducts a comprehensive review of
recent ARF research, summarizes potential precipitation products for ARF applications, and
provides use case studies to demonstrate the derivation of ARF in several selected hydrologic
regions in the U.S.

This research is part of the NRC’s PFHA Research Program and is to assist NRC in assessing
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to
support development of guidance for application of NPP-PFHA. The work will aid the
development of guidance on the use of PFHA methods and support risk-informing NRC’s
licensing framework (flood hazard design standards at proposed new facilities as well as
significance determination tools for evaluating potential deficiencies related to flood protection at
operating facilities). The tools and guidance developed will support and enhance NRC'’s
capacity to perform thorough and efficient reviews of license applications and license
amendment requests. They will also support risk-informed significance determination of
inspection findings, unusual events and other oversight activities.

The discussion of specific references, methods, software, or tools in this NUREG/CR does not
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory
Commission or Oak Ridge National Laboratory. The case study results presented herein are the
result of research efforts only, do not incorporate uncertainty quantification, and should not be
directly incorporated for application. They are intended to demonstrate some of the primary
factors affecting areal reduction factor estimation.

The main findings and recommendations are summarized in this section.

5.1 ARF Characteristics in the United States

Overall, the most general observations that can be made across all methods, precipitation
products, and regions are:

o ARF decreases with decreasing duration

o ARF decreases with increasing area
o ARF decreases with increasing return period (Figure 4-33)
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In particular, the use case study results clearly suggest that ARF decreases with increasing
return period (which was not provided in the conventional TP-29 ARF curves). This supports the
need to develop frequency- (return period) specific ARF for H&H application. However, the
results also suggest that the performance of long return period ARF is strongly controlled by the
length of historic observation (e.g., the poor performance of 100-year ST4 ARF fitting given only
16 years of observation). Therefore, when using purely observation-based approach (such as
the one used in this study), it is questionable if one has sufficient ability and confidence to derive
long-return period areal extreme rainfall and ARF estimates to support H&H application. This
limitation should be clearly acknowledged when selecting and designing PFHA for NPP. Unless
the data sufficiency issue is addressed, long return period ARFs should be estimated using
more conservative (and reliable) short return period ARFs. Process-based numerical weather
simulation can be a promising alternative to resolve this issue.

Regarding ARF methods, the difference across different ARF models is found to be one factor
affecting the estimation of regional ARF. In general, M2 (Koutsoyiannis and Xanthopoulos UK-
NERC Model), M3 (Hydrological Atlas of Switzerland Model), M4 (Australian ARR Model), and
M5 (De Michele Dynamic Scaling Model) provide better fitting. While M3 (Hydrological Atlas of
Switzerland Model) can fit well, it does not include duration as a variable and hence can be
more sensitive to sample size and data quality. M4 (Australian ARR Model) is more difficult to fit
(8 parameters), but it includes frequency levels in the model and can be overall more robust. M5
(De Michele Dynamic Scaling Model) can fit well and has a good underlying theory, and hence
is selected in the CONUS reconnaissance level assessment. Given that M1 (Leclerc & Schaake
TP-29 Model) was developed for smaller area TP-29 values, it cannot provide good fitting when
considering larger area ARF samples (which are likely be the case for many U.S. NPPs). While
M6 (Regional GEV Model) has a good underlying theory, it's more challenging for the ARF
application. Further ad hoc adjustment is likely needed for M6. It’s difficult to fit one set of
parameters for both longer and shorter durations. For the derivation of a generalized ARF
model, one should develop separate models for long, medium and short durations. It is also
acknowledged that other ARF models, which not selected in this use case study, can also be
suitable choices as long as a good fitting performance can be demonstrated. Overall, only fixed-
area ARF (not storm-centered ARF) is evaluated since the fixed-area ARF is a more suitable
choice for PFHA. If the goal is to identify ARF for deterministic applications (e.g., PMP and
PMF), the storm-centered ARF would be a more suitable approach instead.

Regarding data sources, while the effect of data sources is relatively smaller than the effect of
ARF model, non-negligible differences are still found. The gridded precipitation products (e.qg.,
Daymet, PRISM, Livneh) are easy to use, but given their limited temporal resolution, they
cannot be used to derive subdaily ARF. The radar-driven precipitation product (ST4) can better
capture high-resolution spatiotemporal storm structure. However, given its limited period of
record, it provides the worst long return period ARF model fitting across all precipitation
products. While gauge data (DSI-3240) is harder to process, it leads to one of the best ARF
model fitting in Region 05 Ohio. With further consideration of topography-informed spatial
interpolation, there is value to consider gauge data-based approach in future site-specific ARF
studies.

Regarding seasonality, in the three hydrologic regions examined in this study, the results
suggest that the warm season ARF is close to all season ARF, while cool season ARF has a
higher value. The closeness between warm and all seasons indicates that the annual extreme
precipitation in these regions mainly occurs during warm season. The differences in warm and
cool seasons ARF can be explained by their respective controlling extreme precipitation
processes. In most regions, the major extreme precipitation events during warm season are



meso-scale convective storms that area generally smaller in size and have larger spatial
variability (leading to smaller ARF). On the other hand, the major extreme precipitation events in
most regions during cool season are mostly large-scale frontal systems with relatively smaller
spatial variability (as compared to warm season convective storms) that leads to larger ARF.
For the South Atlantic-Gulf region, the difference between warm and cool season ARF is the
smallest, suggesting that the effect of seasonality is less significant in the overall warmer South
Atlantic-Gulf region. For H&H applications such as simulation of rain-on-snow during cool
season in Ohio and Mid-Atlantic regions, the results suggest that a specific cool season ARF
will be needed.

Regarding inter-regional differences, it is found that ARFs are lower in the central U.S., and
higher in eastern and western U.S. Texas-Gulf (R12) & Souris-Red-Rainy (R09) are generally
the lowest among all regions. The results clearly suggest a strong geographical variability
associated with ARF. Therefore, ARF values produced from previous studies (e.g., TP-29) may
not be indiscriminately used at different geographical locations. There is a need to derive
region- or watershed-specific ARF for robust PFHA of national NPPs.

5.2 Challenges for PFHA Applications

While the results of this study suggest that, with the advance of precipitation products and more
advanced ARF methods, more defensible ARF estimates can be derived for H&H applications,
several major challenges are also identified. For the purpose of PFHA for NPPs, these
challenges will need to be addressed in future studies.

e Long return period areal extreme rainfall and ARF derivation: One major finding
from this study is the challenge associated with long return period areal extreme rainfall
and ARF derivation. “Long” return period in this case refers to when the desired return
period is much longer than the period of records of the supporting precipitation data
(e.g., deriving 1000-year extreme rainfall estimate based on 66 years of data). In
particular, when compared to other general H&H applications, PFHA-NPP needs to
evaluate the risks from highly extreme precipitation events (i.e., greater than 1000-year
return levels), which may not be fully supported only by historic observations. In addition,
the potentially changing climatic conditions may further complicate this challenge. From
this perspective, this is a need to explore the derivation of long return period areal
extreme rainfall and ARF through the assistance of process-based, numerical weather
simulation.

¢ Uncertainty quantification: While the variability of ARF across different factors (e.g.,
methods, data sources, geographical locations, and seasonality) were examined in this
study, the statistical uncertainty of these ARF estimates were not evaluated. Existing
statistical methods such as bootstrapping can be used to analyze the uncertainty and
develop confidence intervals of the selected ARF. For the purpose of PFHA, the
uncertainty of ARF should be considered as a part of the H&H application.

o High spatiotemporal resolution dataset: Among the gridded precipitation products
considered in this study (PRISM, Daymet, Livheh, and ST4), the spatial resolution (from
1-km Daymet to ~6km Livneh) appears to be sufficient for the development of watershed
scale ARF. In contrast, temporal data resolution may not be sufficient for some
purposes. While DSI-3240 and ST4 provide hourly data, PRISM, Daymet, and Livneh
only provide daily data. In addition, reanalysis-driven products provide subdaily data but
are of higher spatial resolution. For hydrologic modeling purposes, subdaily data with
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high spatial resolution may be needed, leaving DSI-3240 and ST4 as the potential
options. However, these datasets each present challenges. While data from ST4 is of
limited historical record (since 2002), data from DSI-3240 may extend across several
decades; however, DSI-3240 requires greater processing and interpolation effort. As
with the challenge of estimating long return period ARF, challenges associated with high
spatiotemporal resolution could be overcome by using numerical weather simulation in
future research efforts.

Subwatershed application: The use case studies documented in this report provide
modeled results for HUCO02 (hydrologic region) level assessments. For some regions,
particularly where precipitation-producing processes (e.g., in coastal or mountainous
locations) vary widely within the region, or regions that are composed of multiple
independent watersheds (e.g., South-Atlantic Gulf region), some level of heterogeneity
may exist in the ARF results and yield poorer fitting performance. Site-specific
subwatershed application could yield more reliable results with better performance.

Need for a national ARF product: Perhaps most importantly, there is currently no new
national ARF product (i.e., similar to NOAA Atlas 14) that provides geographically
variable ARFs. Existing ARF products also do not consider the effects of return period or
seasonality and are applicable for only small area sizes. While this study examined how
ARFs may vary based on these different considerations, the results presented herein are
for demonstration purposes only and are not intended to be used for ARF application
without further site-specific evaluation. Additional research and development efforts, with
thorough quality assurance and control performed, would be required to develop a
reliable national ARF product suitable for PFHA application. Such efforts may be suitable
for a federal agency with specific mission and objectives related to weather prediction
and precipitation monitoring, such as NOAA.
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APPENDIX A
SUMMARY OF AVAILABLE PRECIPITATION PRODUCTS

Table A-1 summarizes the precipitation products available for ARF analysis and various
features of these products. They are organized by product type, including gauge-only, gauge-
driven, radar-driven, satellite-driven, and reanalysis-driven precipitation products.

Descriptions of the precipitation products are provided in Section 2.2.
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https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00313
ftp://ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240/
ftp://ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240/
ftp://ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240/
ftp://ftp.ncdc.noaa.gov/pub/data/hourly_precip-3240/
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00505
ftp://ftp.ncdc.noaa.gov/pub/data/15min_precip-3260/
ftp://ftp.ncdc.noaa.gov/pub/data/15min_precip-3260/
ftp://ftp.ncdc.noaa.gov/pub/data/15min_precip-3260/
ftp://ftp.ncdc.noaa.gov/pub/data/15min_precip-3260/
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
https://daymet.ornl.gov/
https://daymet.ornl.gov/
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
ftp://prism.nacse.org/
ftp://prism.nacse.org/
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https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
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https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
https://data.eol.ucar.edu/dataset/21.006
https://data.eol.ucar.edu/dataset/21.006
https://data.eol.ucar.edu/dataset/21.006
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
https://data.eol.ucar.edu/dataset/21.093
https://data.eol.ucar.edu/dataset/21.093
https://data.eol.ucar.edu/dataset/21.093
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://mrms.ncep.noaa.gov/data/
http://mrms.ncep.noaa.gov/data/
http://mrms.ncep.noaa.gov/data/
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https://trmm.gsfc.nasa.gov/3b42.html
https://trmm.gsfc.nasa.gov/3b42.html
https://trmm.gsfc.nasa.gov/3b42.html
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/GPM
https://pmm.nasa.gov/GPM
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
ftp://nomads.ncdc.noaa.gov/NARR/
ftp://nomads.ncdc.noaa.gov/NARR/
ftp://nomads.ncdc.noaa.gov/NARR/
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https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://nomads.ncdc.noaa.gov/modeldata/cmd_flxf/
https://nomads.ncdc.noaa.gov/modeldata/cmd_flxf/
https://nomads.ncdc.noaa.gov/modeldata/cmd_flxf/
https://nomads.ncdc.noaa.gov/modeldata/cmd_flxf/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2
https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/
https://rda.ucar.edu/datasets/ds628.0/#access
https://rda.ucar.edu/datasets/ds628.0/#access
https://rda.ucar.edu/datasets/ds628.0/#access
https://rda.ucar.edu/datasets/ds628.0/#access
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

APPENDIX B
QUALITATIVE ASSESSMENT RESULTS FOR ARF METHODS

Table B-1 documents the qualitative assessment results for ARF methods as described in in
Section 3.3. The results were used to inform which methods would be used in the use case
studies.

B-1
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APPENDIX C
OHIO (REGION 05) DETAILED RESULTS

Additional information on the Ohio regional assessment results is provided in the figures below.
Example information and discussion is provided in the main report. The plots include:

Figure C-1

Figure C-3

Figure C-4

Figure C-5

Figure C-6

Figure C-7

Figure C-8

Figure C-9

Calculated Ohio ARFs and Fitted Models for 1-day Duration and Average
AMS Using Different Datasets and Fitted Models Colored dots represent
calculated ARFs across HUC units; solid curves represent fitted models. ........ C-2

Calculated Ohio ARFs and Fitted Models for 3-day Duration and Average
AMS Using Different Datasets and Fitted Models Colored dots represent

calculated ARFs across HUC units; solid curves represent fitted models......... C-14
Calculated Ohio ARFs and Fitted Models for 1-day Duration and 10-year

Return Period Using Different Datasets and Fitted Models ............ccccccceeee. C-5
Calculated Ohio ARFs and Fitted Models for 2-day Duration and 10-year

Return Period Using Different Datasets and Fitted Models ..............ccccceeveeee. C-6
Calculated Ohio ARFs and Fitted Models for 3-day Duration and 10-year

Return Period Using Different Datasets and Fitted Models ............cccccceeeeeee. C-7
Calculated Ohio ARFs and Fitted Models for 1-day Duration and 100-year

Return Period Using Different Datasets and Fitted Models ............cccccceeeeeen. C-8
Calculated Ohio ARFs and Fitted Models for 2-day Duration and 100-year

Return Period Using Different Datasets and Fitted Models .............cccccevvveeeen. C-9
Calculated Ohio ARFs and Fitted Models for 3-day Duration and 100-year

Return Period Using Different Datasets and Fitted Models .............ccccceee.... C-10
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AMS Using Different Datasets and Fitted Models Colored dots represent
calculated ARFs across HUC units; solid curves represent fitted models.
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Figure C-4 Calculated Ohio ARFs and Fitted Models for 1-day Duration and 10-year
Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure C-7  Calculated Ohio ARFs and Fitted Models for 1-day Duration and 100-year
Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure C-8 Calculated Ohio ARFs and Fitted Models for 2-day Duration and 100-year
Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure C-9 Calculated Ohio ARFs and Fitted Models for 3-day Duration and 100-year
Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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APPENDIX D

MID-ATLANTIC (REGION 02) DETAILED RESULTS

Additional information on the Mid-Atlantic regional assessment results is provided in the figures
below. Example information and discussion is provided in the main report. The plots include:
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Figure D-4
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represent calculated ARFs across HUC units; solid curves represent fitted
models.
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represent calculated ARFs across HUC units; solid curves represent fitted
models.
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represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-4  Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-5 Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-6  Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-7  Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 100-
year Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-8  Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 100-
year Return Period Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure D-9  Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 100-
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APPENDIX E

SOUTH ATLANTIC-GULF (REGION 03) DETAILED RESULTS

Additional information on the South Atlantic-Gulf regional assessment results is provided in the
figures below. Example information and discussion is provided in the main report. The plots
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Figure E-1  Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration
and Average AMS Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure E-2  Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration
and Average AMS Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure E-3  Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration
and Average AMS Using Different Datasets and Fitted Models Colored dots
represent calculated ARFs across HUC units; solid curves represent fitted
models.
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Figure E-4  Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration
and 10-year Return Period Using Different Datasets and Fitted Models
Colored dots represent calculated ARFs across HUC units; solid curves
represent fitted models.
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Figure E-6  Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration
and 10-year Return Period Using Different Datasets and Fitted Models
Colored dots represent calculated ARFs across HUC units; solid curves
represent fitted models.
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Figure E-7  Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration
and 100-year Return Period Using Different Datasets and Fitted Models
Colored dots represent calculated ARFs across HUC units; solid curves
represent fitted models.
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APPENDIX F
CONUS ASSESSMENT DETAILED RESULTS

Additional information on the CONUS assessment results is provided in the figures below.

Example information and discussion is provided in Section 4.4 of the main report. These results

stem from ARF analysis using daily PRISM data and M5 fitting. The plots include:

Figure F-1 CONUS ARF Assessment Maps for 1-day Duration and Average AMS

Figure F-2 CONUS ARF Assessment Maps for 1-day Duration and 10-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different
F N =T B4 S SEPPPPRRI

Figure F-3 CONUS ARF Assessment Maps for 1-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different
ATCA SIZES ..ttt e et a e e e et aaaaaeaarae

Figure F-4 CONUS ARF Assessment Maps for 2-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different
ATCA SIZES ..eeteiiiee ettt e ettt a e e e et e e e e e eaaaae

Figure F-5 CONUS ARF Assessment Maps for 3-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different
ATCA SIZES ..eeiiieies ettt e e e ettt a e e e et e e aaaaaaaae

Figure F-6 CONUS ARF Assessment Plot for 1-day Duration and Average AMS
Using PRISM-daily Data and M5 Model Fitting .............cccoveieiieeeniiiiiinnnnnn.

Figure F-7 CONUS ARF Assessment Plot for 1-day Duration and 10-year Return
Period Using PRISM-daily Data and M5 Model Fitting .............cccccevvvvnnnn.

Figure F-8 CONUS ARF Assessment Plot for 1-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting ................cccvvvnnnnnn.

Figure F-9 CONUS ARF Assessment Plot for 2-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting .............ccccevvvvvennn.

Figure F-10 CONUS ARF Assessment Plot for 3-day duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting .............ccccevvvvvnnnn.



Areal Reduction Factor by HUC02 Duration: 1 day

Area: 400 square miles

using PRISM-daily data and M5 fitting Retum Period: Avg. AMS

ARF

0.54-0.56
0.56-0.58
0.58 - 0.60
0.80-0.62
0.82-064
0.64 - 0.66
0.66 - 0.68
0.68-0.70
070-0.72
072-0.74
074 -0.76
0.76-0.78
0.78-0.80
0.80-0.82
0.82-0.84
0.84 - 0.86
0.86-0.88
0.88-0.90
0.90-0.92
0.82-0.94
0.94 -0.96
0.96-0.98

DDDDDDDDDDDIIIIIIIIIIIA' .

Areal Reduction Factor by HUC02 Duration. 1 day

Area: 2,000 square miles

using PRISM-daily data and M5 fitting Return Period: Avg. AMS

ARF

0.54 - 0.56
0.56-0.58
0.58 - 0.60
0.60-0.82
0.62-0.64
0.84 - 0.66
0.86 - 0.68
0.68-0.70
070-0.72
072-0.74
0.74-0.78
076-0.78
0.78 -0.80
0.80-0.82
0.82-0.84
0.84-0.86
0.86-0.88
0.88-0.90
0.90-0.92
0.92-0.94
0.94 -0.96
0.96-0.98

DDDDDDDDDDDIIIIIIIIIII.

Areal Reduction Factor by HUC02 Duration: 1 day

Area: 10,000 square miles

using PRISM-daily data and M5 fitting Retum Period: Avg. AMS

0.54-0.56
0.56-0.58
0.58 - 0.60
0.80-0.62
0.82-064
0.64 - 0.66
0.66 - 0.68
0.68-0.70
070-0.72
072-0.74
-0.76
0.76-0.78
0.78-0.80
0.80-0.82
0.82-0.84
0.84 - 0.86
0.86-0.88
0.88-0.90
0.90-0.92
0.82-0.94
0.94 -0.96
0.96-0.98

DDDDDDDDDDDIIIIIIIIIIIA

Figure F-1  CONUS ARF Assessment Maps for 1-day Duration and Average AMS Using
PRISM-daily Data and M5 Model Fitting across Different Area Sizes
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Figure F-2 CONUS ARF Assessment Maps for 1-day Duration and 10-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different Area
Sizes
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Figure F-3 CONUS ARF Assessment Maps for 1-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different Area
Sizes
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Figure F-4 CONUS ARF Assessment Maps for 2-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different Area
Sizes
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Figure F-5 CONUS ARF Assessment Maps for 3-day Duration and 100-year Return
Period Using PRISM-daily Data and M5 Model Fitting across Different Area
Sizes
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